Cargando…

New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres

BACKGROUND: It’s pivotal to control the presence of legionella in sanitary structures. So, it’s important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE: To evaluate ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Ortí-Lucas, Rafael Manuel, Luciano, Eugenio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906530/
https://www.ncbi.nlm.nih.gov/pubmed/35264765
http://dx.doi.org/10.1038/s41370-022-00421-0
Descripción
Sumario:BACKGROUND: It’s pivotal to control the presence of legionella in sanitary structures. So, it’s important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE: To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index. METHODS: A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method. RESULTS: Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples. SIGNIFICANCE: We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires’ disease in hospital settings.