Cargando…
Novel Method of Electromagnetic Field Measurements of the Human Brain
Introduction Advancements in neuroimaging have changed the field of medicine. Computed tomography (CT) and magnetic resonance imaging (MRI) typically produce a static image of the brain, while continuous electroencephalogram (EEG) data is limited to the cortical surface. The brain’s chemical reactio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cureus
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906554/ https://www.ncbi.nlm.nih.gov/pubmed/35282504 http://dx.doi.org/10.7759/cureus.21982 |
Sumario: | Introduction Advancements in neuroimaging have changed the field of medicine. Computed tomography (CT) and magnetic resonance imaging (MRI) typically produce a static image of the brain, while continuous electroencephalogram (EEG) data is limited to the cortical surface. The brain’s chemical reactions produce an electric circuit that generates a magnetic field. We seek to test the ability of a non-contact sensor to measure the human brain’s electromagnetic field (EMF). Methods A lightweight, inexpensive construct was designed to hold EMF sensors to non-invasively measure the human brain’s dynamic EMF. Measurements were conducted on non-clinical human volunteers. Background data without the human subjects was obtained, followed by introducing human subjects. Motionless human subject data was obtained, followed by a subject performing a task. Finally, a subject received auditory stimulation, and data was obtained. Results Our non-contact sensor was able to detect a difference between background activity without a human subject and the electromagnetic field of a human brain within the scalp and skull. Detectable differences in magnetic field potential were also obtained when the subject performed a task and received auditory stimulation. Conclusion It is possible to continuously measure living human brain dynamic electromagnetic fields throughout the entire brain in a non-contact, non-invasive, continuous manner through the human scalp and skull in the standard environment. The signals are unique to the individual human and can be differentiated from background activity. |
---|