Cargando…
Enhancing strength and ductility via crystalline-amorphous nanoarchitectures in TiZr-based alloys
Crystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906574/ https://www.ncbi.nlm.nih.gov/pubmed/35263125 http://dx.doi.org/10.1126/sciadv.abm2884 |
Sumario: | Crystalline-amorphous composite have the potential to achieve high strength and high ductility through manipulation of their microstructures. Here, we fabricate a TiZr-based alloy with micrometer-size equiaxed grains that are made up of three-dimensional bicontinuous crystalline-amorphous nanoarchitectures (3D-BCANs). In situ tension and compression tests reveal that the BCANs exhibit enhanced ductility and strain hardening capability compared to both amorphous and crystalline phases, which impart ultra-high yield strength (~1.80 GPa), ultimate tensile strength (~2.3 GPa), and large uniform ductility (~7.0%) into the TiZr-based alloy. Experiments combined with finite element simulations reveal the synergetic deformation mechanisms; i.e., the amorphous phase imposes extra strain hardening to crystalline domains while crystalline domains prevent the premature shear localization in the amorphous phases. These mechanisms endow our material with an effective strength–ductility–strain hardening combination. |
---|