Cargando…
Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic
A variational autoencoder (VAE) is a machine learning algorithm, useful for generating a compressed and interpretable latent space. These representations have been generated from various biomedical data types and can be used to produce realistic-looking simulated data. However, standard vanilla VAEs...
Autores principales: | Chow, Yuen Ler, Singh, Shantanu, Carpenter, Anne E., Way, Gregory P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906577/ https://www.ncbi.nlm.nih.gov/pubmed/35213530 http://dx.doi.org/10.1371/journal.pcbi.1009888 |
Ejemplares similares
-
Optimization of physical quantities in the autoencoder latent space
por: Park, S. M., et al.
Publicado: (2022) -
Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders
por: Wang, Zhenxing, et al.
Publicado: (2019) -
Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity
por: Ochiai, Toshiki, et al.
Publicado: (2023) -
Hybrid autoencoder with orthogonal latent space for robust population structure inference
por: Yuan, Meng, et al.
Publicado: (2023) -
Explore Protein Conformational Space With Variational Autoencoder
por: Tian, Hao, et al.
Publicado: (2021)