Cargando…

Biomimetic multifunctional persistent luminescence nanoprobes for long-term near-infrared imaging and therapy of cerebral and cerebellar gliomas

Glioma is the most common malignant primary brain tumor, and the accurate diagnosis of glioma has always been a challenge. Moreover, cerebellar glioma, which is difficult to be detected by magnetic resonance imaging, is not usually diagnosed until after the appearance of clinical symptoms. In this s...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Jianglong, Zou, Rui, Law, Ga-Lai, Wang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906728/
https://www.ncbi.nlm.nih.gov/pubmed/35263137
http://dx.doi.org/10.1126/sciadv.abm7077
Descripción
Sumario:Glioma is the most common malignant primary brain tumor, and the accurate diagnosis of glioma has always been a challenge. Moreover, cerebellar glioma, which is difficult to be detected by magnetic resonance imaging, is not usually diagnosed until after the appearance of clinical symptoms. In this study, TRZD, a near-infrared (NIR) persistent luminescence (PL) nanoparticle with a dual function of imaging and therapy, was synthesized based on ZnGa(2)O(4):Cr(3+),Sn(4+). TRZD showed excellent rechargeable NIR PL for more than 30 hours in vivo with good tissue penetration for long-term autofluorescence-free imaging. The tumor growth of both the subcutaneous and orthotropic glioma models was significantly inhibited by TRZD. This is the first-time approach using NIR PL nanoprobes for both diagnosis and therapy of glioma. This is also the first-time report of nanotechnology-based diagnosis and therapy of cerebellar gliomas. This study offers a highly promising multifunctional nanoparticle for theranostics of a wide range of brain diseases.