Cargando…
Identifying COVID-19 Outbreaks From Contact-Tracing Interview Forms for Public Health Departments: Development of a Natural Language Processing Pipeline
BACKGROUND: In Wisconsin, COVID-19 case interview forms contain free-text fields that need to be mined to identify potential outbreaks for targeted policy making. We developed an automated pipeline to ingest the free text into a pretrained neural language model to identify businesses and facilities...
Autores principales: | Caskey, John, McConnell, Iain L, Oguss, Madeline, Dligach, Dmitriy, Kulikoff, Rachel, Grogan, Brittany, Gibson, Crystal, Wimmer, Elizabeth, DeSalvo, Traci E, Nyakoe-Nyasani, Edwin E, Churpek, Matthew M, Afshar, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906835/ https://www.ncbi.nlm.nih.gov/pubmed/35144241 http://dx.doi.org/10.2196/36119 |
Ejemplares similares
-
Correction: Identifying COVID-19 Outbreaks From Contact-Tracing Interview Forms for Public Health Departments: Development of a Natural Language Processing Pipeline
por: Caskey, John, et al.
Publicado: (2022) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022) -
Creation of a data commons for substance misuse related health research through privacy-preserving patient record linkage between hospitals and state agencies
por: Afshar, Majid, et al.
Publicado: (2023) -
Hierarchical Annotation for Building A Suite of Clinical Natural Language Processing Tasks: Progress Note Understanding
por: Gao, Yanjun, et al.
Publicado: (2022) -
The Evaluation of a Clinical Decision Support Tool Using Natural Language Processing to Screen Hospitalized Adults for Unhealthy Substance Use: Protocol for a Quasi-Experimental Design
por: Joyce, Cara, et al.
Publicado: (2022)