Cargando…
Automated analysis of activity, sleep, and rhythmic behaviour in various animal species with the Rtivity software
Behavioural studies provide insights into normal and disrupted biological mechanisms. In many research areas, a growing spectrum of animal models—particularly small organisms—is used for high-throughput studies with infrared-based activity monitors, generating counts per time data. The freely availa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907194/ https://www.ncbi.nlm.nih.gov/pubmed/35264711 http://dx.doi.org/10.1038/s41598-022-08195-z |
Sumario: | Behavioural studies provide insights into normal and disrupted biological mechanisms. In many research areas, a growing spectrum of animal models—particularly small organisms—is used for high-throughput studies with infrared-based activity monitors, generating counts per time data. The freely available software to analyse such data, however, are primarily optimized for drosophila and circadian analysis. Researchers investigating other species or non-circadian behaviour would thus benefit from a more versatile software. Here we report the development of a free and open-source software—Rtivity—allowing customisation of species-specific parameters, and offering a versatile analysis of behavioural patterns, biological rhythms, stimulus responses, and survival. Rtivity is based on the R language and uses Shiny and the recently developed Rethomics package for a user-friendly graphical interface without requiring coding skills. Rtivity automatically assesses survival, computes various activity, sleep, and rhythmicity parameters, and performs fractal analysis of activity fluctuations. Rtivity generates multiple informative graphs, and exports structured data for efficient interoperability with common statistical software. In summary, Rtivity facilitates and enhances the versatility of the behavioural analysis of diverse animal species (e.g. drosophila, zebrafish, daphnia, ants). It is thus suitable for a broad range of researchers from multidisciplinary fields such as ecology, neurobiology, toxicology, and pharmacology. |
---|