Cargando…
A sampling-guided unsupervised learning method to capture percolation in complex networks
The use of machine learning methods in classical and quantum systems has led to novel techniques to classify ordered and disordered phases, as well as uncover transition points in critical phenomena. Efforts to extend these methods to dynamical processes in complex networks is a field of active rese...
Autores principales: | Mimar, Sayat, Ghoshal, Gourab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907239/ https://www.ncbi.nlm.nih.gov/pubmed/35264699 http://dx.doi.org/10.1038/s41598-022-07921-x |
Ejemplares similares
-
Growing urban bicycle networks
por: Szell, Michael, et al.
Publicado: (2022) -
Connecting intercity mobility with urban welfare
por: Mimar, Sayat, et al.
Publicado: (2022) -
Impact of urban structure on infectious disease spreading
por: Aguilar, Javier, et al.
Publicado: (2022) -
Connecting Core Percolation and Controllability of Complex Networks
por: Jia, Tao, et al.
Publicado: (2014) -
Bootstrap percolation on spatial networks
por: Gao, Jian, et al.
Publicado: (2015)