Cargando…
An imputation approach using subdistribution weights for deep survival analysis with competing events
With the popularity of deep neural networks (DNNs) in recent years, many researchers have proposed DNNs for the analysis of survival data (time-to-event data). These networks learn the distribution of survival times directly from the predictor variables without making strong assumptions on the under...
Autores principales: | Gorgi Zadeh, Shekoufeh, Behning, Charlotte, Schmid, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907249/ https://www.ncbi.nlm.nih.gov/pubmed/35264661 http://dx.doi.org/10.1038/s41598-022-07828-7 |
Ejemplares similares
-
The importance of censoring in competing risks analysis of the subdistribution hazard
por: Donoghoe, Mark W., et al.
Publicado: (2017) -
Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data
por: Tapak, Leili, et al.
Publicado: (2021) -
Safety analysis of new medications in clinical trials: a simulation study to assess the differences between cause-specific and subdistribution frameworks in the presence of competing events
por: Genet, Astrid, et al.
Publicado: (2023) -
On the relation between the cause‐specific hazard and the subdistribution rate for competing risks data: The Fine–Gray model revisited
por: Putter, Hein, et al.
Publicado: (2020) -
A review of the use of time‐varying covariates in the Fine‐Gray subdistribution hazard competing risk regression model
por: Austin, Peter C., et al.
Publicado: (2019)