Cargando…
Lossy compression of statistical data using quantum annealer
We present a new lossy compression algorithm for statistical floating-point data through a representation learning with binary variables. The algorithm finds a set of basis vectors and their binary coefficients that precisely reconstruct the original data. The optimization for the basis vectors is p...
Autores principales: | Yoon, Boram, Nguyen, Nga T. T., Chang, Chia Cheng, Rrapaj, Ermal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907274/ https://www.ncbi.nlm.nih.gov/pubmed/35264581 http://dx.doi.org/10.1038/s41598-022-07539-z |
Ejemplares similares
-
The evolution of lossy compression
por: Marzen, Sarah E., et al.
Publicado: (2017) -
A regression algorithm for accelerated lattice QCD that exploits sparse inference on the D-Wave quantum annealer
por: Nguyen, Nga T. T., et al.
Publicado: (2020) -
Fast digital lossy compression for X-ray ptychographic data
por: Huang, Panpan, et al.
Publicado: (2021) -
Performance evaluation of lossy quality compression algorithms for RNA-seq data
por: Yu, Rongshan, et al.
Publicado: (2020) -
Lossy compression of TPC data and trajectory tracking efficiency for the ALICE experiment
por: Nicolaucig, A, et al.
Publicado: (2003)