Cargando…
Automatic differentiation of Grade I and II meningiomas on magnetic resonance image using an asymmetric convolutional neural network
The Grade of meningioma has significant implications for selecting treatment regimens ranging from observation to surgical resection with adjuvant radiation. For most patients, meningiomas are diagnosed radiologically, and Grade is not determined unless a surgical procedure is performed. The goal of...
Autores principales: | Vassantachart, April, Cao, Yufeng, Gribble, Michael, Guzman, Samuel, Ye, Jason C., Hurth, Kyle, Mathew, Anna, Zada, Gabriel, Fan, Zhaoyang, Chang, Eric L., Yang, Wensha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907289/ https://www.ncbi.nlm.nih.gov/pubmed/35264655 http://dx.doi.org/10.1038/s41598-022-07859-0 |
Ejemplares similares
-
Automatic Prediction of Meningioma Grade Image Based on Data Amplification and Improved Convolutional Neural Network
por: Zhu, Hong, et al.
Publicado: (2019) -
Contrast-Enhanced Liver Magnetic Resonance Image Synthesis Using Gradient Regularized Multi-Modal Multi-Discrimination Sparse Attention Fusion GAN
por: Jiao, Changzhe, et al.
Publicado: (2023) -
Automatic Meningioma Segmentation and Grading Prediction: A Hybrid Deep-Learning Method
por: Chen, Chaoyue, et al.
Publicado: (2021) -
An improved multi-input deep convolutional neural network for automatic emotion recognition
por: Chen, Peiji, et al.
Publicado: (2022) -
Residency Match Trends, Racial Disparity, and Matching Amid a Pandemic
por: Vassantachart, April, et al.
Publicado: (2020)