Cargando…

Antiferroelectric negative capacitance from a structural phase transition in zirconia

Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. Howev...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoffmann, Michael, Wang, Zheng, Tasneem, Nujhat, Zubair, Ahmad, Ravindran, Prasanna Venkatesan, Tian, Mengkun, Gaskell, Anthony Arthur, Triyoso, Dina, Consiglio, Steven, Tapily, Kandabara, Clark, Robert, Hur, Jae, Pentapati, Sai Surya Kiran, Lim, Sung Kyu, Dopita, Milan, Yu, Shimeng, Chern, Winston, Kacher, Josh, Reyes-Lillo, Sebastian E., Antoniadis, Dimitri, Ravichandran, Jayakanth, Slesazeck, Stefan, Mikolajick, Thomas, Khan, Asif Islam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907358/
https://www.ncbi.nlm.nih.gov/pubmed/35264570
http://dx.doi.org/10.1038/s41467-022-28860-1
_version_ 1784665623924572160
author Hoffmann, Michael
Wang, Zheng
Tasneem, Nujhat
Zubair, Ahmad
Ravindran, Prasanna Venkatesan
Tian, Mengkun
Gaskell, Anthony Arthur
Triyoso, Dina
Consiglio, Steven
Tapily, Kandabara
Clark, Robert
Hur, Jae
Pentapati, Sai Surya Kiran
Lim, Sung Kyu
Dopita, Milan
Yu, Shimeng
Chern, Winston
Kacher, Josh
Reyes-Lillo, Sebastian E.
Antoniadis, Dimitri
Ravichandran, Jayakanth
Slesazeck, Stefan
Mikolajick, Thomas
Khan, Asif Islam
author_facet Hoffmann, Michael
Wang, Zheng
Tasneem, Nujhat
Zubair, Ahmad
Ravindran, Prasanna Venkatesan
Tian, Mengkun
Gaskell, Anthony Arthur
Triyoso, Dina
Consiglio, Steven
Tapily, Kandabara
Clark, Robert
Hur, Jae
Pentapati, Sai Surya Kiran
Lim, Sung Kyu
Dopita, Milan
Yu, Shimeng
Chern, Winston
Kacher, Josh
Reyes-Lillo, Sebastian E.
Antoniadis, Dimitri
Ravichandran, Jayakanth
Slesazeck, Stefan
Mikolajick, Thomas
Khan, Asif Islam
author_sort Hoffmann, Michael
collection PubMed
description Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO(2) and ZrO(2)) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO(2) gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO(2) and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.
format Online
Article
Text
id pubmed-8907358
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89073582022-03-23 Antiferroelectric negative capacitance from a structural phase transition in zirconia Hoffmann, Michael Wang, Zheng Tasneem, Nujhat Zubair, Ahmad Ravindran, Prasanna Venkatesan Tian, Mengkun Gaskell, Anthony Arthur Triyoso, Dina Consiglio, Steven Tapily, Kandabara Clark, Robert Hur, Jae Pentapati, Sai Surya Kiran Lim, Sung Kyu Dopita, Milan Yu, Shimeng Chern, Winston Kacher, Josh Reyes-Lillo, Sebastian E. Antoniadis, Dimitri Ravichandran, Jayakanth Slesazeck, Stefan Mikolajick, Thomas Khan, Asif Islam Nat Commun Article Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO(2) and ZrO(2)) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO(2) gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO(2) and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions. Nature Publishing Group UK 2022-03-09 /pmc/articles/PMC8907358/ /pubmed/35264570 http://dx.doi.org/10.1038/s41467-022-28860-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Hoffmann, Michael
Wang, Zheng
Tasneem, Nujhat
Zubair, Ahmad
Ravindran, Prasanna Venkatesan
Tian, Mengkun
Gaskell, Anthony Arthur
Triyoso, Dina
Consiglio, Steven
Tapily, Kandabara
Clark, Robert
Hur, Jae
Pentapati, Sai Surya Kiran
Lim, Sung Kyu
Dopita, Milan
Yu, Shimeng
Chern, Winston
Kacher, Josh
Reyes-Lillo, Sebastian E.
Antoniadis, Dimitri
Ravichandran, Jayakanth
Slesazeck, Stefan
Mikolajick, Thomas
Khan, Asif Islam
Antiferroelectric negative capacitance from a structural phase transition in zirconia
title Antiferroelectric negative capacitance from a structural phase transition in zirconia
title_full Antiferroelectric negative capacitance from a structural phase transition in zirconia
title_fullStr Antiferroelectric negative capacitance from a structural phase transition in zirconia
title_full_unstemmed Antiferroelectric negative capacitance from a structural phase transition in zirconia
title_short Antiferroelectric negative capacitance from a structural phase transition in zirconia
title_sort antiferroelectric negative capacitance from a structural phase transition in zirconia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907358/
https://www.ncbi.nlm.nih.gov/pubmed/35264570
http://dx.doi.org/10.1038/s41467-022-28860-1
work_keys_str_mv AT hoffmannmichael antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT wangzheng antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT tasneemnujhat antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT zubairahmad antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT ravindranprasannavenkatesan antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT tianmengkun antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT gaskellanthonyarthur antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT triyosodina antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT consigliosteven antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT tapilykandabara antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT clarkrobert antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT hurjae antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT pentapatisaisuryakiran antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT limsungkyu antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT dopitamilan antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT yushimeng antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT chernwinston antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT kacherjosh antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT reyeslillosebastiane antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT antoniadisdimitri antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT ravichandranjayakanth antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT slesazeckstefan antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT mikolajickthomas antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia
AT khanasifislam antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia