Cargando…
Antiferroelectric negative capacitance from a structural phase transition in zirconia
Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. Howev...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907358/ https://www.ncbi.nlm.nih.gov/pubmed/35264570 http://dx.doi.org/10.1038/s41467-022-28860-1 |
_version_ | 1784665623924572160 |
---|---|
author | Hoffmann, Michael Wang, Zheng Tasneem, Nujhat Zubair, Ahmad Ravindran, Prasanna Venkatesan Tian, Mengkun Gaskell, Anthony Arthur Triyoso, Dina Consiglio, Steven Tapily, Kandabara Clark, Robert Hur, Jae Pentapati, Sai Surya Kiran Lim, Sung Kyu Dopita, Milan Yu, Shimeng Chern, Winston Kacher, Josh Reyes-Lillo, Sebastian E. Antoniadis, Dimitri Ravichandran, Jayakanth Slesazeck, Stefan Mikolajick, Thomas Khan, Asif Islam |
author_facet | Hoffmann, Michael Wang, Zheng Tasneem, Nujhat Zubair, Ahmad Ravindran, Prasanna Venkatesan Tian, Mengkun Gaskell, Anthony Arthur Triyoso, Dina Consiglio, Steven Tapily, Kandabara Clark, Robert Hur, Jae Pentapati, Sai Surya Kiran Lim, Sung Kyu Dopita, Milan Yu, Shimeng Chern, Winston Kacher, Josh Reyes-Lillo, Sebastian E. Antoniadis, Dimitri Ravichandran, Jayakanth Slesazeck, Stefan Mikolajick, Thomas Khan, Asif Islam |
author_sort | Hoffmann, Michael |
collection | PubMed |
description | Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO(2) and ZrO(2)) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO(2) gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO(2) and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions. |
format | Online Article Text |
id | pubmed-8907358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-89073582022-03-23 Antiferroelectric negative capacitance from a structural phase transition in zirconia Hoffmann, Michael Wang, Zheng Tasneem, Nujhat Zubair, Ahmad Ravindran, Prasanna Venkatesan Tian, Mengkun Gaskell, Anthony Arthur Triyoso, Dina Consiglio, Steven Tapily, Kandabara Clark, Robert Hur, Jae Pentapati, Sai Surya Kiran Lim, Sung Kyu Dopita, Milan Yu, Shimeng Chern, Winston Kacher, Josh Reyes-Lillo, Sebastian E. Antoniadis, Dimitri Ravichandran, Jayakanth Slesazeck, Stefan Mikolajick, Thomas Khan, Asif Islam Nat Commun Article Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO(2) and ZrO(2)) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO(2) gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO(2) and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions. Nature Publishing Group UK 2022-03-09 /pmc/articles/PMC8907358/ /pubmed/35264570 http://dx.doi.org/10.1038/s41467-022-28860-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Hoffmann, Michael Wang, Zheng Tasneem, Nujhat Zubair, Ahmad Ravindran, Prasanna Venkatesan Tian, Mengkun Gaskell, Anthony Arthur Triyoso, Dina Consiglio, Steven Tapily, Kandabara Clark, Robert Hur, Jae Pentapati, Sai Surya Kiran Lim, Sung Kyu Dopita, Milan Yu, Shimeng Chern, Winston Kacher, Josh Reyes-Lillo, Sebastian E. Antoniadis, Dimitri Ravichandran, Jayakanth Slesazeck, Stefan Mikolajick, Thomas Khan, Asif Islam Antiferroelectric negative capacitance from a structural phase transition in zirconia |
title | Antiferroelectric negative capacitance from a structural phase transition in zirconia |
title_full | Antiferroelectric negative capacitance from a structural phase transition in zirconia |
title_fullStr | Antiferroelectric negative capacitance from a structural phase transition in zirconia |
title_full_unstemmed | Antiferroelectric negative capacitance from a structural phase transition in zirconia |
title_short | Antiferroelectric negative capacitance from a structural phase transition in zirconia |
title_sort | antiferroelectric negative capacitance from a structural phase transition in zirconia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907358/ https://www.ncbi.nlm.nih.gov/pubmed/35264570 http://dx.doi.org/10.1038/s41467-022-28860-1 |
work_keys_str_mv | AT hoffmannmichael antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT wangzheng antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT tasneemnujhat antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT zubairahmad antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT ravindranprasannavenkatesan antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT tianmengkun antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT gaskellanthonyarthur antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT triyosodina antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT consigliosteven antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT tapilykandabara antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT clarkrobert antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT hurjae antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT pentapatisaisuryakiran antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT limsungkyu antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT dopitamilan antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT yushimeng antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT chernwinston antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT kacherjosh antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT reyeslillosebastiane antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT antoniadisdimitri antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT ravichandranjayakanth antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT slesazeckstefan antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT mikolajickthomas antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia AT khanasifislam antiferroelectricnegativecapacitancefromastructuralphasetransitioninzirconia |