Cargando…
Unsupervised explainable AI for molecular evolutionary study of forty thousand SARS-CoV-2 genomes
BACKGROUND: Unsupervised AI (artificial intelligence) can obtain novel knowledge from big data without particular models or prior knowledge and is highly desirable for unveiling hidden features in big data. SARS-CoV-2 poses a serious threat to public health and one important issue in characterizing...
Autores principales: | Iwasaki, Yuki, Abe, Takashi, Wada, Kennosuke, Wada, Yoshiko, Ikemura, Toshimichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907386/ https://www.ncbi.nlm.nih.gov/pubmed/35272618 http://dx.doi.org/10.1186/s12866-022-02484-3 |
Ejemplares similares
-
AI-based search for convergently expanding, advantageous mutations in SARS-CoV-2 by focusing on oligonucleotide frequencies
por: Ikemura, Toshimichi, et al.
Publicado: (2022) -
Comparative genomic analysis of the human genome and six bat genomes using unsupervised machine learning: Mb-level CpG and TFBS islands
por: Iwasaki, Yuki, et al.
Publicado: (2022) -
Evolutionary Changes in Vertebrate Genome Signatures with Special Focus on Coelacanth
por: Iwasaki, Yuki, et al.
Publicado: (2014) -
Notable clustering of transcription-factor-binding motifs in human pericentric regions and its biological significance
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
Novel bioinformatics strategies for prediction of directional sequence changes in influenza virus genomes and for surveillance of potentially hazardous strains
por: Iwasaki, Yuki, et al.
Publicado: (2013)