Cargando…
Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition
Electroencephalography (EEG)-based emotion computing has become one of the research hotspots of human-computer interaction (HCI). However, it is difficult to effectively learn the interactions between brain regions in emotional states by using traditional convolutional neural networks because there...
Autores principales: | Bao, Guangcheng, Yang, Kai, Tong, Li, Shu, Jun, Zhang, Rongkai, Wang, Linyuan, Yan, Bin, Zeng, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907537/ https://www.ncbi.nlm.nih.gov/pubmed/35280845 http://dx.doi.org/10.3389/fnbot.2022.834952 |
Ejemplares similares
-
Data Augmentation for EEG-Based Emotion Recognition Using Generative Adversarial Networks
por: Bao, Guangcheng, et al.
Publicado: (2021) -
Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition
por: Bao, Guangcheng, et al.
Publicado: (2021) -
CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
por: Jia, Jingjing, et al.
Publicado: (2022) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
EEG-Based Emotion Recognition Using a 2D CNN with Different Kernels
por: Wang, Yuqi, et al.
Publicado: (2022)