Cargando…
Multimodal MRI Image Decision Fusion-Based Network for Glioma Classification
PURPOSE: Glioma is the most common primary brain tumor, with varying degrees of aggressiveness and prognosis. Accurate glioma classification is very important for treatment planning and prognosis prediction. The main purpose of this study is to design a novel effective algorithm for further improvin...
Autores principales: | Guo, Shunchao, Wang, Lihui, Chen, Qijian, Wang, Li, Zhang, Jian, Zhu, Yuemin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907622/ https://www.ncbi.nlm.nih.gov/pubmed/35280828 http://dx.doi.org/10.3389/fonc.2022.819673 |
Ejemplares similares
-
MM-UNet: A multimodality brain tumor segmentation network in MRI images
por: Zhao, Liang, et al.
Publicado: (2022) -
Deep Neural Network Analysis of Pathology Images With Integrated Molecular Data for Enhanced Glioma Classification and Grading
por: Pei, Linmin, et al.
Publicado: (2021) -
Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients
por: Friedrich, Michel, et al.
Publicado: (2022) -
A histopathological image classification method for cholangiocarcinoma based on spatial-channel feature fusion convolution neural network
por: Zhou, Hui, et al.
Publicado: (2023) -
An Effective Multimodal Image Fusion Method Using MRI and PET for Alzheimer's Disease Diagnosis
por: Song, Juan, et al.
Publicado: (2021)