Cargando…

A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study

BACKGROUND: Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tariciotti, Leonardo, Caccavella, Valerio M., Fiore, Giorgio, Schisano, Luigi, Carrabba, Giorgio, Borsa, Stefano, Giordano, Martina, Palmisciano, Paolo, Remoli, Giulia, Remore, Luigi Gianmaria, Pluderi, Mauro, Caroli, Manuela, Conte, Giorgio, Triulzi, Fabio, Locatelli, Marco, Bertani, Giulio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907851/
https://www.ncbi.nlm.nih.gov/pubmed/35280801
http://dx.doi.org/10.3389/fonc.2022.816638
_version_ 1784665745767006208
author Tariciotti, Leonardo
Caccavella, Valerio M.
Fiore, Giorgio
Schisano, Luigi
Carrabba, Giorgio
Borsa, Stefano
Giordano, Martina
Palmisciano, Paolo
Remoli, Giulia
Remore, Luigi Gianmaria
Pluderi, Mauro
Caroli, Manuela
Conte, Giorgio
Triulzi, Fabio
Locatelli, Marco
Bertani, Giulio
author_facet Tariciotti, Leonardo
Caccavella, Valerio M.
Fiore, Giorgio
Schisano, Luigi
Carrabba, Giorgio
Borsa, Stefano
Giordano, Martina
Palmisciano, Paolo
Remoli, Giulia
Remore, Luigi Gianmaria
Pluderi, Mauro
Caroli, Manuela
Conte, Giorgio
Triulzi, Fabio
Locatelli, Marco
Bertani, Giulio
author_sort Tariciotti, Leonardo
collection PubMed
description BACKGROUND: Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients. OBJECTIVE: To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs. MATERIALS AND METHODS: We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans. RESULTS: The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection. CONCLUSION: We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases.
format Online
Article
Text
id pubmed-8907851
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89078512022-03-11 A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study Tariciotti, Leonardo Caccavella, Valerio M. Fiore, Giorgio Schisano, Luigi Carrabba, Giorgio Borsa, Stefano Giordano, Martina Palmisciano, Paolo Remoli, Giulia Remore, Luigi Gianmaria Pluderi, Mauro Caroli, Manuela Conte, Giorgio Triulzi, Fabio Locatelli, Marco Bertani, Giulio Front Oncol Oncology BACKGROUND: Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients. OBJECTIVE: To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs. MATERIALS AND METHODS: We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans. RESULTS: The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection. CONCLUSION: We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases. Frontiers Media S.A. 2022-02-24 /pmc/articles/PMC8907851/ /pubmed/35280801 http://dx.doi.org/10.3389/fonc.2022.816638 Text en Copyright © 2022 Tariciotti, Caccavella, Fiore, Schisano, Carrabba, Borsa, Giordano, Palmisciano, Remoli, Remore, Pluderi, Caroli, Conte, Triulzi, Locatelli and Bertani https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Tariciotti, Leonardo
Caccavella, Valerio M.
Fiore, Giorgio
Schisano, Luigi
Carrabba, Giorgio
Borsa, Stefano
Giordano, Martina
Palmisciano, Paolo
Remoli, Giulia
Remore, Luigi Gianmaria
Pluderi, Mauro
Caroli, Manuela
Conte, Giorgio
Triulzi, Fabio
Locatelli, Marco
Bertani, Giulio
A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study
title A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study
title_full A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study
title_fullStr A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study
title_full_unstemmed A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study
title_short A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study
title_sort deep learning model for preoperative differentiation of glioblastoma, brain metastasis and primary central nervous system lymphoma: a pilot study
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907851/
https://www.ncbi.nlm.nih.gov/pubmed/35280801
http://dx.doi.org/10.3389/fonc.2022.816638
work_keys_str_mv AT tariciottileonardo adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT caccavellavaleriom adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT fioregiorgio adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT schisanoluigi adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT carrabbagiorgio adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT borsastefano adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT giordanomartina adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT palmiscianopaolo adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT remoligiulia adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT remoreluigigianmaria adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT pluderimauro adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT carolimanuela adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT contegiorgio adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT triulzifabio adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT locatellimarco adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT bertanigiulio adeeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT tariciottileonardo deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT caccavellavaleriom deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT fioregiorgio deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT schisanoluigi deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT carrabbagiorgio deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT borsastefano deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT giordanomartina deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT palmiscianopaolo deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT remoligiulia deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT remoreluigigianmaria deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT pluderimauro deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT carolimanuela deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT contegiorgio deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT triulzifabio deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT locatellimarco deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy
AT bertanigiulio deeplearningmodelforpreoperativedifferentiationofglioblastomabrainmetastasisandprimarycentralnervoussystemlymphomaapilotstudy