Cargando…
Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers
Research on detecting Tuberculosis (TB) findings on chest radiographs (or Chest X-rays: CXR) using convolutional neural networks (CNNs) has demonstrated superior performance due to the emergence of publicly available, large-scale datasets with expert annotations and availability of scalable computat...
Autores principales: | Rajaraman, Sivaramakrishnan, Zamzmi, Ghada, Folio, Les R., Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8907925/ https://www.ncbi.nlm.nih.gov/pubmed/35281798 http://dx.doi.org/10.3389/fgene.2022.864724 |
Ejemplares similares
-
Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
A Systematic Evaluation of Ensemble Learning Methods for Fine-Grained Semantic Segmentation of Tuberculosis-Consistent Lesions in Chest Radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Novel loss functions for ensemble-based medical image classification
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2021) -
DeBoNet: A deep bone suppression model ensemble to improve disease detection in chest radiographs
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022)