Cargando…
Use of Machine Learning to Estimate the Per-Protocol Effect of Low-Dose Aspirin on Pregnancy Outcomes: A Secondary Analysis of a Randomized Clinical Trial
IMPORTANCE: In randomized clinical trials (RCTs), per-protocol effects may be of interest in the presence of nonadherence with the randomized treatment protocol. Using machine learning in per-protocol effect estimation can help avoid model misspecification owing to strong parametric assumptions, as...
Autores principales: | Zhong, Yongqi, Brooks, Maria M., Kennedy, Edward H., Bodnar, Lisa M., Naimi, Ashley I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908068/ https://www.ncbi.nlm.nih.gov/pubmed/35262718 http://dx.doi.org/10.1001/jamanetworkopen.2021.43414 |
Ejemplares similares
-
Effect of preconception low dose aspirin on pregnancy and live birth according to socioeconomic status: A secondary analysis of a randomized clinical trial
por: Agrawala, Shilpi, et al.
Publicado: (2019) -
Machine learning can improve the development of evidence-based dietary guidelines
por: Bodnar, Lisa M, et al.
Publicado: (2022) -
Low-Dose Aspirin and the Risk of Stroke and Intracerebral Bleeding in Healthy Older People: Secondary Analysis of a Randomized Clinical Trial
por: Cloud, Geoffrey C., et al.
Publicado: (2023) -
Comparison of Risk of Recrudescent Fever in Children With Kawasaki Disease Treated With Intravenous Immunoglobulin and Low-Dose vs High-Dose Aspirin
por: Platt, Brooks, et al.
Publicado: (2020) -
Low dose aspirin and pregnancy: how important is aspirin resistance?
por: Navaratnam, K, et al.
Publicado: (2016)