Cargando…
A Synaptic Pruning-Based Spiking Neural Network for Hand-Written Digits Classification
A spiking neural network model inspired by synaptic pruning is developed and trained to extract features of hand-written digits. The network is composed of three spiking neural layers and one output neuron whose firing rate is used for classification. The model detects and collects the geometric fea...
Autores principales: | Faghihi, Faramarz, Alashwal, Hany, Moustafa, Ahmed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908262/ https://www.ncbi.nlm.nih.gov/pubmed/35280233 http://dx.doi.org/10.3389/frai.2022.680165 |
Ejemplares similares
-
Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference
por: Hawks, Benjamin, et al.
Publicado: (2021) -
Random pruning: channel sparsity by expectation scaling factor
por: Sun, Chuanmeng, et al.
Publicado: (2023) -
Self-optimizing neural network in the classification of real valued data
por: Miniak-Górecka, Alicja, et al.
Publicado: (2022) -
Leveraging Guided Backpropagation to Select Convolutional Neural Networks for Plant Classification
por: Mostafa, Sakib, et al.
Publicado: (2022) -
Data augmentation and deep neural networks for the classification of Pakistani racial speakers recognition
por: Amjad, Ammar, et al.
Publicado: (2022)