Cargando…

Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal

[Image: see text] Coal is characterized by a complex pore-fracture network and functional groups, which are derived from various geological origins and which further affect methane adsorption. To explore the relationship between the geological origins of pore-fractures and methane adsorption behavio...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Sijie, Zhou, Xiaozhi, Zhang, Jinchao, Xiang, Wenxin, Xu, Ang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908364/
https://www.ncbi.nlm.nih.gov/pubmed/35284768
http://dx.doi.org/10.1021/acsomega.1c07402
_version_ 1784665862157893632
author Han, Sijie
Zhou, Xiaozhi
Zhang, Jinchao
Xiang, Wenxin
Xu, Ang
author_facet Han, Sijie
Zhou, Xiaozhi
Zhang, Jinchao
Xiang, Wenxin
Xu, Ang
author_sort Han, Sijie
collection PubMed
description [Image: see text] Coal is characterized by a complex pore-fracture network and functional groups, which are derived from various geological origins and which further affect methane adsorption. To explore the relationship between the geological origins of pore-fractures and methane adsorption behaviors, we conducted pore structure tests and adsorption isotherms on six Qinshui high-rank coals. The pores and fractures were observed using an optical microscope (OM), a field emission scanning electron microscope (FESEM), and a high-resolution transmission electron microscope (HRTEM), and the pore structure parameters were determined using mercury intrusion and low-pressure N(2) and CO(2) adsorption. High-pressure CH(4) adsorption isotherms were obtained at 30 °C using the manometric method. Results show that the Qinshui high-rank coals develop five stages of pore size distribution, consisting of the smaller micropore stage (0.3–1 nm), the larger micropore and smaller mesopore stage (1–10 nm), the mesopore and smaller macropore stage (10–110 nm), the microfracture stage (0.11–40 μm), and the larger macropore stage (>40 μm). The micropores dominate the total pore volume (PV) and specific surface area (SSA). Pores and fractures of various morphologies and sizes have different geological origins, which are related to coalification and stress field evolution. Methane adsorption on coals mainly occurs in the micropores as a form of volume filling. The maximum pore size for complete gas filling (MPSCGF) ranges from 0.60 to 0.88 nm in Qinshui high-rank coals. The coal-forming geological processes, such as coalification and stress field evolution, contribute to various pores and fractures, which show different pore sizes and functional groups. The geological origins of pores and fractures control the methane adsorption behaviors in coals by way of the pore size and functional groups. Surface coverage-related methane adsorption behavior occurs in fractures, primary pores, and large-scale secondary pores, while micropore filling is the methane adsorption behavior in macromolecular pores and small-scale secondary pores. The aim of this study is to provide a new insight into the methane adsorption on coals from the geological process of the formation and modification of pores and fractures.
format Online
Article
Text
id pubmed-8908364
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-89083642022-03-11 Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal Han, Sijie Zhou, Xiaozhi Zhang, Jinchao Xiang, Wenxin Xu, Ang ACS Omega [Image: see text] Coal is characterized by a complex pore-fracture network and functional groups, which are derived from various geological origins and which further affect methane adsorption. To explore the relationship between the geological origins of pore-fractures and methane adsorption behaviors, we conducted pore structure tests and adsorption isotherms on six Qinshui high-rank coals. The pores and fractures were observed using an optical microscope (OM), a field emission scanning electron microscope (FESEM), and a high-resolution transmission electron microscope (HRTEM), and the pore structure parameters were determined using mercury intrusion and low-pressure N(2) and CO(2) adsorption. High-pressure CH(4) adsorption isotherms were obtained at 30 °C using the manometric method. Results show that the Qinshui high-rank coals develop five stages of pore size distribution, consisting of the smaller micropore stage (0.3–1 nm), the larger micropore and smaller mesopore stage (1–10 nm), the mesopore and smaller macropore stage (10–110 nm), the microfracture stage (0.11–40 μm), and the larger macropore stage (>40 μm). The micropores dominate the total pore volume (PV) and specific surface area (SSA). Pores and fractures of various morphologies and sizes have different geological origins, which are related to coalification and stress field evolution. Methane adsorption on coals mainly occurs in the micropores as a form of volume filling. The maximum pore size for complete gas filling (MPSCGF) ranges from 0.60 to 0.88 nm in Qinshui high-rank coals. The coal-forming geological processes, such as coalification and stress field evolution, contribute to various pores and fractures, which show different pore sizes and functional groups. The geological origins of pores and fractures control the methane adsorption behaviors in coals by way of the pore size and functional groups. Surface coverage-related methane adsorption behavior occurs in fractures, primary pores, and large-scale secondary pores, while micropore filling is the methane adsorption behavior in macromolecular pores and small-scale secondary pores. The aim of this study is to provide a new insight into the methane adsorption on coals from the geological process of the formation and modification of pores and fractures. American Chemical Society 2022-02-24 /pmc/articles/PMC8908364/ /pubmed/35284768 http://dx.doi.org/10.1021/acsomega.1c07402 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Han, Sijie
Zhou, Xiaozhi
Zhang, Jinchao
Xiang, Wenxin
Xu, Ang
Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal
title Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal
title_full Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal
title_fullStr Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal
title_full_unstemmed Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal
title_short Relationship between the Geological Origins of Pore-Fracture and Methane Adsorption Behaviors in High-Rank Coal
title_sort relationship between the geological origins of pore-fracture and methane adsorption behaviors in high-rank coal
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908364/
https://www.ncbi.nlm.nih.gov/pubmed/35284768
http://dx.doi.org/10.1021/acsomega.1c07402
work_keys_str_mv AT hansijie relationshipbetweenthegeologicaloriginsofporefractureandmethaneadsorptionbehaviorsinhighrankcoal
AT zhouxiaozhi relationshipbetweenthegeologicaloriginsofporefractureandmethaneadsorptionbehaviorsinhighrankcoal
AT zhangjinchao relationshipbetweenthegeologicaloriginsofporefractureandmethaneadsorptionbehaviorsinhighrankcoal
AT xiangwenxin relationshipbetweenthegeologicaloriginsofporefractureandmethaneadsorptionbehaviorsinhighrankcoal
AT xuang relationshipbetweenthegeologicaloriginsofporefractureandmethaneadsorptionbehaviorsinhighrankcoal