Cargando…
A Novel Chemical–Electrochemical Hydrogen Production from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric Ions and Electroreduction of Hydrogen Ions
[Image: see text] Hydrogen production from the electrolysis of coal slurry is a promising approach under the condition of low voltage (0.8–1.2 V) and medium temperature. However, the rate of hydrogen production is slugged by poor anode kinetics, under an electrochemical condition that results from t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908484/ https://www.ncbi.nlm.nih.gov/pubmed/35284700 http://dx.doi.org/10.1021/acsomega.1c06759 |
_version_ | 1784665885707862016 |
---|---|
author | Olukayode, Niyi Yang, Weijing Xiang, Kang Ye, Shenrong Sun, Zhigang Han, Zhenfei Sui, Sheng |
author_facet | Olukayode, Niyi Yang, Weijing Xiang, Kang Ye, Shenrong Sun, Zhigang Han, Zhenfei Sui, Sheng |
author_sort | Olukayode, Niyi |
collection | PubMed |
description | [Image: see text] Hydrogen production from the electrolysis of coal slurry is a promising approach under the condition of low voltage (0.8–1.2 V) and medium temperature. However, the rate of hydrogen production is slugged by poor anode kinetics, under an electrochemical condition that results from the collision of the coal particles with the anode surface. This paper reports a novel process that consists of two steps: the oxidation of the coal slurry by ferric ions(III) in a hydrothermal reactor at a temperature of 120–160 °C and the electro-oxidation of ferric ions(II) in the electrochemical cell to produce hydrogen. This technique circumvents the technical issues experienced in the conventional coal slurry electrolysis process by adopting a two-step process consisting of solid–liquid reactions instead of solid–solid reactions. This indirect oxidation process produced a current density of 120 mA/cm(2) at room temperature and a voltage of 1 V, which is higher than the values reported in the conventional processes. An investigation of the oxidation mechanism was carried out via scanning electron microscopy, Fourier-transform infrared spectroscopy and elemental analysis. The results obtained showed that the oxidation of coal by ferric ions occurs from the surface to the inner parts of the coal particles in a stepwise manner. It was also revealed that the ferric ions in the media increased the active interfaces both of the coal particles and of the anode electrode. This explains the high hydrogen production rate obtained from this process. This novel discovery can pave the way for the commercialization of coal slurry electrolysis. |
format | Online Article Text |
id | pubmed-8908484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89084842022-03-11 A Novel Chemical–Electrochemical Hydrogen Production from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric Ions and Electroreduction of Hydrogen Ions Olukayode, Niyi Yang, Weijing Xiang, Kang Ye, Shenrong Sun, Zhigang Han, Zhenfei Sui, Sheng ACS Omega [Image: see text] Hydrogen production from the electrolysis of coal slurry is a promising approach under the condition of low voltage (0.8–1.2 V) and medium temperature. However, the rate of hydrogen production is slugged by poor anode kinetics, under an electrochemical condition that results from the collision of the coal particles with the anode surface. This paper reports a novel process that consists of two steps: the oxidation of the coal slurry by ferric ions(III) in a hydrothermal reactor at a temperature of 120–160 °C and the electro-oxidation of ferric ions(II) in the electrochemical cell to produce hydrogen. This technique circumvents the technical issues experienced in the conventional coal slurry electrolysis process by adopting a two-step process consisting of solid–liquid reactions instead of solid–solid reactions. This indirect oxidation process produced a current density of 120 mA/cm(2) at room temperature and a voltage of 1 V, which is higher than the values reported in the conventional processes. An investigation of the oxidation mechanism was carried out via scanning electron microscopy, Fourier-transform infrared spectroscopy and elemental analysis. The results obtained showed that the oxidation of coal by ferric ions occurs from the surface to the inner parts of the coal particles in a stepwise manner. It was also revealed that the ferric ions in the media increased the active interfaces both of the coal particles and of the anode electrode. This explains the high hydrogen production rate obtained from this process. This novel discovery can pave the way for the commercialization of coal slurry electrolysis. American Chemical Society 2022-02-23 /pmc/articles/PMC8908484/ /pubmed/35284700 http://dx.doi.org/10.1021/acsomega.1c06759 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Olukayode, Niyi Yang, Weijing Xiang, Kang Ye, Shenrong Sun, Zhigang Han, Zhenfei Sui, Sheng A Novel Chemical–Electrochemical Hydrogen Production from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric Ions and Electroreduction of Hydrogen Ions |
title | A Novel Chemical–Electrochemical Hydrogen Production
from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric
Ions and Electroreduction of Hydrogen Ions |
title_full | A Novel Chemical–Electrochemical Hydrogen Production
from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric
Ions and Electroreduction of Hydrogen Ions |
title_fullStr | A Novel Chemical–Electrochemical Hydrogen Production
from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric
Ions and Electroreduction of Hydrogen Ions |
title_full_unstemmed | A Novel Chemical–Electrochemical Hydrogen Production
from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric
Ions and Electroreduction of Hydrogen Ions |
title_short | A Novel Chemical–Electrochemical Hydrogen Production
from Coal Slurry by a Two-Step Process: Oxidation of Coal by Ferric
Ions and Electroreduction of Hydrogen Ions |
title_sort | novel chemical–electrochemical hydrogen production
from coal slurry by a two-step process: oxidation of coal by ferric
ions and electroreduction of hydrogen ions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908484/ https://www.ncbi.nlm.nih.gov/pubmed/35284700 http://dx.doi.org/10.1021/acsomega.1c06759 |
work_keys_str_mv | AT olukayodeniyi anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT yangweijing anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT xiangkang anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT yeshenrong anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT sunzhigang anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT hanzhenfei anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT suisheng anovelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT olukayodeniyi novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT yangweijing novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT xiangkang novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT yeshenrong novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT sunzhigang novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT hanzhenfei novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions AT suisheng novelchemicalelectrochemicalhydrogenproductionfromcoalslurrybyatwostepprocessoxidationofcoalbyferricionsandelectroreductionofhydrogenions |