Cargando…

From the Electron Density Gradient to the Quantitative Reactivity Indicators: Local Softness and the Fukui Function

[Image: see text] Important reactivity measures such as the local softness, the Fukui function, and the global hardness have been calculated directly from first principles with the use of the electron density function, beyond the finite difference approximation. Our recently derived density gradient...

Descripción completa

Detalles Bibliográficos
Autores principales: Zaklika, Jarosław, Hładyszowski, Jerzy, Ordon, Piotr, Komorowski, Ludwik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908489/
https://www.ncbi.nlm.nih.gov/pubmed/35284764
http://dx.doi.org/10.1021/acsomega.1c06540
Descripción
Sumario:[Image: see text] Important reactivity measures such as the local softness, the Fukui function, and the global hardness have been calculated directly from first principles with the use of the electron density function, beyond the finite difference approximation. Our recently derived density gradient theorem and the principle of nearsightedness of the electronic matter have been instrumental in obtaining the original, albeit approximate, result on the local softness of an atom. By integration of the local softness s(r), we obtain the global softness S and the Fukui function f(r) = s(r)/S. Local and global softness values have also been calculated analytically for the basic hydrogenic orbitals; the general relation to the atomic number S = σZ(–2) has been demonstrated, with constants σ characteristic for each orbital type. Global hardness η = 1/S calculated for atoms and ions has been favorably tested against its conventional measure given by the finite difference approximation: (I – A). Calculated test results for atoms and ions in rows 1–4 of the periodic table have been presented.