Cargando…
From the Electron Density Gradient to the Quantitative Reactivity Indicators: Local Softness and the Fukui Function
[Image: see text] Important reactivity measures such as the local softness, the Fukui function, and the global hardness have been calculated directly from first principles with the use of the electron density function, beyond the finite difference approximation. Our recently derived density gradient...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908489/ https://www.ncbi.nlm.nih.gov/pubmed/35284764 http://dx.doi.org/10.1021/acsomega.1c06540 |
_version_ | 1784665886910578688 |
---|---|
author | Zaklika, Jarosław Hładyszowski, Jerzy Ordon, Piotr Komorowski, Ludwik |
author_facet | Zaklika, Jarosław Hładyszowski, Jerzy Ordon, Piotr Komorowski, Ludwik |
author_sort | Zaklika, Jarosław |
collection | PubMed |
description | [Image: see text] Important reactivity measures such as the local softness, the Fukui function, and the global hardness have been calculated directly from first principles with the use of the electron density function, beyond the finite difference approximation. Our recently derived density gradient theorem and the principle of nearsightedness of the electronic matter have been instrumental in obtaining the original, albeit approximate, result on the local softness of an atom. By integration of the local softness s(r), we obtain the global softness S and the Fukui function f(r) = s(r)/S. Local and global softness values have also been calculated analytically for the basic hydrogenic orbitals; the general relation to the atomic number S = σZ(–2) has been demonstrated, with constants σ characteristic for each orbital type. Global hardness η = 1/S calculated for atoms and ions has been favorably tested against its conventional measure given by the finite difference approximation: (I – A). Calculated test results for atoms and ions in rows 1–4 of the periodic table have been presented. |
format | Online Article Text |
id | pubmed-8908489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89084892022-03-11 From the Electron Density Gradient to the Quantitative Reactivity Indicators: Local Softness and the Fukui Function Zaklika, Jarosław Hładyszowski, Jerzy Ordon, Piotr Komorowski, Ludwik ACS Omega [Image: see text] Important reactivity measures such as the local softness, the Fukui function, and the global hardness have been calculated directly from first principles with the use of the electron density function, beyond the finite difference approximation. Our recently derived density gradient theorem and the principle of nearsightedness of the electronic matter have been instrumental in obtaining the original, albeit approximate, result on the local softness of an atom. By integration of the local softness s(r), we obtain the global softness S and the Fukui function f(r) = s(r)/S. Local and global softness values have also been calculated analytically for the basic hydrogenic orbitals; the general relation to the atomic number S = σZ(–2) has been demonstrated, with constants σ characteristic for each orbital type. Global hardness η = 1/S calculated for atoms and ions has been favorably tested against its conventional measure given by the finite difference approximation: (I – A). Calculated test results for atoms and ions in rows 1–4 of the periodic table have been presented. American Chemical Society 2022-02-25 /pmc/articles/PMC8908489/ /pubmed/35284764 http://dx.doi.org/10.1021/acsomega.1c06540 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Zaklika, Jarosław Hładyszowski, Jerzy Ordon, Piotr Komorowski, Ludwik From the Electron Density Gradient to the Quantitative Reactivity Indicators: Local Softness and the Fukui Function |
title | From the Electron Density Gradient to the Quantitative
Reactivity Indicators: Local Softness and the Fukui Function |
title_full | From the Electron Density Gradient to the Quantitative
Reactivity Indicators: Local Softness and the Fukui Function |
title_fullStr | From the Electron Density Gradient to the Quantitative
Reactivity Indicators: Local Softness and the Fukui Function |
title_full_unstemmed | From the Electron Density Gradient to the Quantitative
Reactivity Indicators: Local Softness and the Fukui Function |
title_short | From the Electron Density Gradient to the Quantitative
Reactivity Indicators: Local Softness and the Fukui Function |
title_sort | from the electron density gradient to the quantitative
reactivity indicators: local softness and the fukui function |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908489/ https://www.ncbi.nlm.nih.gov/pubmed/35284764 http://dx.doi.org/10.1021/acsomega.1c06540 |
work_keys_str_mv | AT zaklikajarosław fromtheelectrondensitygradienttothequantitativereactivityindicatorslocalsoftnessandthefukuifunction AT hładyszowskijerzy fromtheelectrondensitygradienttothequantitativereactivityindicatorslocalsoftnessandthefukuifunction AT ordonpiotr fromtheelectrondensitygradienttothequantitativereactivityindicatorslocalsoftnessandthefukuifunction AT komorowskiludwik fromtheelectrondensitygradienttothequantitativereactivityindicatorslocalsoftnessandthefukuifunction |