Cargando…
Layer-by-Layer Organic Photovoltaic Solar Cells Using a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor
[Image: see text] Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908506/ https://www.ncbi.nlm.nih.gov/pubmed/35284724 http://dx.doi.org/10.1021/acsomega.1c05715 |
_version_ | 1784665890816524288 |
---|---|
author | Faure, Marie D. M. Dindault, Chloé Rice, Nicole A. Lessard, Benoît H. |
author_facet | Faure, Marie D. M. Dindault, Chloé Rice, Nicole A. Lessard, Benoît H. |
author_sort | Faure, Marie D. M. |
collection | PubMed |
description | [Image: see text] Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((3BS)(2)-SiPc) paired with poly(3-hexylthiophene) (P3HT) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))] (PBDB-T) donors in an LbL OPV structure. Using a direct architecture, P3HT/(3BS)(2)-SiPc LbL devices show power conversion efficiencies (PCEs) up to 3.0%, which is comparable or better than the corresponding bulk heterojunction (BHJ) devices with either (3BS)(2)-SiPc or PC(61)BM. PBDB-T/(3BS)(2)-SiPc LbL devices resulted in PCEs up to 3.3%, with an impressive open-circuit voltage (V(oc)) as high as 1.06 V, which is among the highest V(oc) obtained employing the LbL approach. We also compared devices incorporating vanadium oxide (VOx) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer and found that VOx modified the donor layer morphology and led to improved V(oc). Probing the composition as a function of film layer depths revealed a similar distribution of active material for both BHJ and LbL structures when using (3BS)(2)-SiPc as an NFA. These findings suggest that (3BS)(2)-SiPc is a promising NFA that can be processed using the LbL technique, an inherently easier fabrication methodology for large-area production of OPVs. |
format | Online Article Text |
id | pubmed-8908506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89085062022-03-11 Layer-by-Layer Organic Photovoltaic Solar Cells Using a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor Faure, Marie D. M. Dindault, Chloé Rice, Nicole A. Lessard, Benoît H. ACS Omega [Image: see text] Silicon phthalocyanines (SiPcs) are promising, inexpensive, and easy to synthesize non-fullerene acceptor (NFA) candidates for all-solution sequentially processed layer-by-layer (LbL) organic photovoltaic (OPV) devices. Here, we report the use of bis(tri-n-butylsilyl oxide) SiPc ((3BS)(2)-SiPc) paired with poly(3-hexylthiophene) (P3HT) and poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione))] (PBDB-T) donors in an LbL OPV structure. Using a direct architecture, P3HT/(3BS)(2)-SiPc LbL devices show power conversion efficiencies (PCEs) up to 3.0%, which is comparable or better than the corresponding bulk heterojunction (BHJ) devices with either (3BS)(2)-SiPc or PC(61)BM. PBDB-T/(3BS)(2)-SiPc LbL devices resulted in PCEs up to 3.3%, with an impressive open-circuit voltage (V(oc)) as high as 1.06 V, which is among the highest V(oc) obtained employing the LbL approach. We also compared devices incorporating vanadium oxide (VOx) or poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole transporting layer and found that VOx modified the donor layer morphology and led to improved V(oc). Probing the composition as a function of film layer depths revealed a similar distribution of active material for both BHJ and LbL structures when using (3BS)(2)-SiPc as an NFA. These findings suggest that (3BS)(2)-SiPc is a promising NFA that can be processed using the LbL technique, an inherently easier fabrication methodology for large-area production of OPVs. American Chemical Society 2022-02-22 /pmc/articles/PMC8908506/ /pubmed/35284724 http://dx.doi.org/10.1021/acsomega.1c05715 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Faure, Marie D. M. Dindault, Chloé Rice, Nicole A. Lessard, Benoît H. Layer-by-Layer Organic Photovoltaic Solar Cells Using a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor |
title | Layer-by-Layer Organic Photovoltaic Solar Cells Using
a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor |
title_full | Layer-by-Layer Organic Photovoltaic Solar Cells Using
a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor |
title_fullStr | Layer-by-Layer Organic Photovoltaic Solar Cells Using
a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor |
title_full_unstemmed | Layer-by-Layer Organic Photovoltaic Solar Cells Using
a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor |
title_short | Layer-by-Layer Organic Photovoltaic Solar Cells Using
a Solution-Processed Silicon Phthalocyanine Non-Fullerene Acceptor |
title_sort | layer-by-layer organic photovoltaic solar cells using
a solution-processed silicon phthalocyanine non-fullerene acceptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908506/ https://www.ncbi.nlm.nih.gov/pubmed/35284724 http://dx.doi.org/10.1021/acsomega.1c05715 |
work_keys_str_mv | AT fauremariedm layerbylayerorganicphotovoltaicsolarcellsusingasolutionprocessedsiliconphthalocyaninenonfullereneacceptor AT dindaultchloe layerbylayerorganicphotovoltaicsolarcellsusingasolutionprocessedsiliconphthalocyaninenonfullereneacceptor AT ricenicolea layerbylayerorganicphotovoltaicsolarcellsusingasolutionprocessedsiliconphthalocyaninenonfullereneacceptor AT lessardbenoith layerbylayerorganicphotovoltaicsolarcellsusingasolutionprocessedsiliconphthalocyaninenonfullereneacceptor |