Cargando…

Insecticidal and growth inhibitory activity of gut microbes isolated from adults of Spodoptera litura (Fab.)

BACKGROUND: Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) commonly known as tobacco caterpillar is a polyphagous pest that causes significant damage to many agricultural crops. The extensive use of chemical insecticides against S. litura has resulted in development of resistance. In order to fin...

Descripción completa

Detalles Bibliográficos
Autores principales: Devi, Sarita, Saini, Harvinder Singh, Kaur, Sanehdeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908599/
https://www.ncbi.nlm.nih.gov/pubmed/35272633
http://dx.doi.org/10.1186/s12866-022-02476-3
Descripción
Sumario:BACKGROUND: Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) commonly known as tobacco caterpillar is a polyphagous pest that causes significant damage to many agricultural crops. The extensive use of chemical insecticides against S. litura has resulted in development of resistance. In order to find potential biocontrol agents, gut microbes were investigated for insecticidal potential. These microbes live in a diverse relationship with insects that may vary from beneficial to pathogenic. RESULTS: Enterococcus casseliflavus, Enterococcus mundtii, Serratia marcescens, Klebsiella pneumoniae, Pseudomonas paralactis and Pantoea brenneri were isolated from adults of S. litura. Screening of these microbial isolates for insecticidal potential against S. litura showed higher larval mortality due to K. pneumoniae and P. paralactis. These bacteria also negatively affected the development of insect along with significant decline in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food of insect. The bacteria significantly decreased the reproductive potential of insect. Perturbations in the composition of gut microbiome and damage to gut epithelium were also observed that might be associated with decreased survival of this insect. CONCLUSIONS: Our study reveals the toxic effects of K. pneumoniae and P. paralactis on biology of S. litura. These bacteria may be used as potential candidates for developing ecofriendly strategies to manage this insect pest.