Cargando…
Local Kernel Regression and Neural Network Approaches to the Conformational Landscapes of Oligopeptides
[Image: see text] The application of machine learning to theoretical chemistry has made it possible to combine the accuracy of quantum chemical energetics with the thorough sampling of finite-temperature fluctuations. To reach this goal, a diverse set of methods has been proposed, ranging from simpl...
Autores principales: | Fabregat, Raimon, Fabrizio, Alberto, Engel, Edgar A., Meyer, Benjamin, Juraskova, Veronika, Ceriotti, Michele, Corminboeuf, Clemence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908737/ https://www.ncbi.nlm.nih.gov/pubmed/35179897 http://dx.doi.org/10.1021/acs.jctc.1c00813 |
Ejemplares similares
-
How Robust Is the Reversible
Steric Shielding Strategy
for Photoswitchable Organocatalysts?
por: Gallarati, Simone, et al.
Publicado: (2022) -
Hamiltonian-Reservoir Replica Exchange and Machine
Learning Potentials for Computational Organic Chemistry
por: Fabregat, Raimon, et al.
Publicado: (2020) -
Tuning the Thermal Stability and Photoisomerization of Azoheteroarenes through Macrocycle Strain
por: Vela, Sergi, et al.
Publicado: (2020) -
Electron density learning of non-covalent systems
por: Fabrizio, Alberto, et al.
Publicado: (2019) -
Transferable Machine-Learning Model of the Electron
Density
por: Grisafi, Andrea, et al.
Publicado: (2018)