Cargando…
PathDetect-SOM: A Neural Network Approach for the Identification of Pathways in Ligand Binding Simulations
[Image: see text] Understanding the process of ligand–protein recognition is important to unveil biological mechanisms and to guide drug discovery and design. Enhanced-sampling molecular dynamics is now routinely used to simulate the ligand binding process, resulting in the need for suitable tools f...
Autores principales: | Motta, Stefano, Callea, Lara, Bonati, Laura, Pandini, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908765/ https://www.ncbi.nlm.nih.gov/pubmed/35213804 http://dx.doi.org/10.1021/acs.jctc.1c01163 |
Ejemplares similares
-
Metadynamics-Based Approaches for Modeling the Hypoxia-Inducible
Factor 2α Ligand Binding Process
por: Callea, Lara, et al.
Publicado: (2021) -
Exploring the PXR ligand binding mechanism with advanced Molecular Dynamics methods
por: Motta, Stefano, et al.
Publicado: (2018) -
Reconstruction of ARNT PAS-B Unfolding Pathways
by Steered Molecular Dynamics and Artificial Neural Networks
por: Motta, Stefano, et al.
Publicado: (2021) -
Ligand-induced perturbation of the HIF-2α:ARNT dimer dynamics
por: Motta, Stefano, et al.
Publicado: (2018) -
Modeling the binding of diverse ligands within the Ah receptor ligand binding domain
por: Giani Tagliabue, Sara, et al.
Publicado: (2019)