Cargando…
Mismatches between Morphology and DNA in Italian Partridges May Not Be Explained Only by Recent Artificial Release of Farm-Reared Birds
SIMPLE SUMMARY: One of the major drivers of genetic pollution is artificial translocation, which causes hybridization and introgression. We analyzed genetic markers of Grey and Rock Partridges from collections, wild populations and farms, mostly in Italy. We documented a mismatch between morphology...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908819/ https://www.ncbi.nlm.nih.gov/pubmed/35268110 http://dx.doi.org/10.3390/ani12050541 |
Sumario: | SIMPLE SUMMARY: One of the major drivers of genetic pollution is artificial translocation, which causes hybridization and introgression. We analyzed genetic markers of Grey and Rock Partridges from collections, wild populations and farms, mostly in Italy. We documented a mismatch between morphology and DNA in the identification of some individuals, as well as hybridization between the two genera of the Grey and Rock Partridges: Perdix and Alectoris. Our results suggest that species of the two genera can hybridize in nature and that artificial translocations and releases of farm reared birds for restocking or reintroduction purposes may be only partially responsible for the DNA-morphology mismatches of Italian partridges. ABSTRACT: Translocations and releases of farm-reared birds are considered among the major drivers of genetic pollution with consequent loss of genetic diversity in wild populations. In this study, we aimed to assess the extent of hybridization and introgression in the Italian partridges as a consequence of translocation. We surveyed two mitochondrial markers and one nuclear marker of Alectoris and Perdix from collections (museums and private collections), extant wild populations and farms. Consistent with previous studies, we found haplotypes of allochthonous species within the same genus, likely due to introductions for hunting activities. In addition, we found hybrids between Perdix and Alectoris species with genetic markers from both genera in single individuals. Such introgression was bidirectional and in both mitochondrial and nuclear markers. Counterintuitively, most of the hybrid samples came from collections before the 1950s, when large-scale translocations started, from wild populations where Grey Partridge (Perdix perdix) and Rock Partridge (Alectoris graeca) overlap in their distribution, whereas only one hybrid occurred among the farmed birds. Our results suggest that Perdix and Alectoris species can hybridize in nature and that artificial translocations and releases of farm-reared birds for restocking or reintroduction purposes may be only partially responsible for the genomic mismatches of Italian partridges. |
---|