Cargando…
One-Shot Learning with Pseudo-Labeling for Cattle Video Segmentation in Smart Livestock Farming
SIMPLE SUMMARY: Deep learning-based segmentation methods rely on large-scale pixel-labeled datasets to achieve good performance. However, it is resource-costly to label animal images due to their irregular contours and changing postures. To keep a balance between segmentation accuracy and speed usin...
Autores principales: | Qiao, Yongliang, Xue, Tengfei, Kong, He, Clark, Cameron, Lomax, Sabrina, Rafique, Khalid, Sukkarieh, Salah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908826/ https://www.ncbi.nlm.nih.gov/pubmed/35268130 http://dx.doi.org/10.3390/ani12050558 |
Ejemplares similares
-
Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review
por: Qiao, Yongliang, et al.
Publicado: (2021) -
Improving Known–Unknown Cattle’s Face Recognition for Smart Livestock Farm Management
por: Meng, Yao, et al.
Publicado: (2023) -
Vocal individuality of Holstein-Friesian cattle is maintained across putatively positive and negative farming contexts
por: Green, Alexandra, et al.
Publicado: (2019) -
Interactive Dairy Goat Image Segmentation for Precision Livestock Farming
por: Zhang, Lianyue, et al.
Publicado: (2023) -
Smart Products in Livestock Farming—An Empirical Study on the Attitudes of German Farmers
por: Schukat, Sirkka, et al.
Publicado: (2021)