Cargando…

Pseudogene AK4P1 promotes pancreatic ductal adenocarcinoma progression through relieving miR-375-mediated YAP1 degradation

Pseudogenes have been reported to play oncogenic or tumor-suppressive roles in cancer progression. However, the molecular mechanism of most pseudogenes in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Herein, we characterized a novel pseudogene-miRNA-mRNA network associated with PDAC prog...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Lang, Zhang, Yun, Pu, Feng, Yang, Chong, Yang, Shula, Yu, Jinze, Xu, Zihan, Yang, Hongji, Zhou, Yu, Zhu, Shikai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8908928/
https://www.ncbi.nlm.nih.gov/pubmed/35220277
http://dx.doi.org/10.18632/aging.203921
Descripción
Sumario:Pseudogenes have been reported to play oncogenic or tumor-suppressive roles in cancer progression. However, the molecular mechanism of most pseudogenes in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Herein, we characterized a novel pseudogene-miRNA-mRNA network associated with PDAC progression using bioinformatics analysis. After screening by dreamBase and GEPIA, 12 up-regulated and 7 down-regulated differentially expressed pseudogenes (DEPs) were identified. According to survival analysis, only elevated AK4P1 indicated a poor prognosis for PDAC patients. Moreover, we found that AK4 acts as a cognate gene of AK4P1 and also predicts worse survival for PDAC patients. Furthermore, 32 miRNAs were predicted to bind to AK4P1 by starBase, among which miR-375 was identified as the most potential binding miRNA of AK4P1. A total of 477 potential target genes of miR-375 were obtained by miRNet, in which 49 hub genes with node degree ≥ 20 were identified by STRING. Subsequent analysis for hub genes demonstrated that YAP1 may be a functional downstream target of AK4P1. To confirmed the above findings, microarray, and qRT-PCR assay revealed that YAP1 was dramatically upregulated in both PDAC cells and tissues. Functional experiments showed that knockdown of YAP1 significantly suppressed PDAC cells growth, increased apoptosis, and decreased the ability of invasion. In conclusion, amplification of AK4P1 may fuel the onset and development of PDAC by targeting YAP1 through competitively binding to miR-375, and serve as a promising biomarker and therapeutic target for PDAC.