Cargando…
Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications
SIMPLE SUMMARY: The histopathological image is widely considered as the gold standard for the diagnosis and prognosis of human cancers. Recently, deep learning technology has been extremely successful in the field of computer vision, which has also boosted considerable interest in digital pathology...
Autores principales: | Wu, Yawen, Cheng, Michael, Huang, Shuo, Pei, Zongxiang, Zuo, Yingli, Liu, Jianxin, Yang, Kai, Zhu, Qi, Zhang, Jie, Hong, Honghai, Zhang, Daoqiang, Huang, Kun, Cheng, Liang, Shao, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909166/ https://www.ncbi.nlm.nih.gov/pubmed/35267505 http://dx.doi.org/10.3390/cancers14051199 |
Ejemplares similares
-
BrcaSeg: A Deep Learning Approach for Tissue Quantification and Genomic Correlations of Histopathological Images
por: Lu, Zixiao, et al.
Publicado: (2021) -
Diffusion-weighted MRI in solitary pulmonary lesions: associations between apparent diffusion coefficient and multiple histopathological parameters
por: Zhang, Feng, et al.
Publicado: (2018) -
Deep-Learning–Based Characterization of Tumor-Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data
por: Lu, Zixiao, et al.
Publicado: (2020) -
Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma
por: Cheng, Jun, et al.
Publicado: (2021) -
Computed tomography: principles, design, artifacts, and recent advances
por: Hsieh, Jiang
Publicado: (2015)