Cargando…
Patchless Multi-Stage Transfer Learning for Improved Mammographic Breast Mass Classification
SIMPLE SUMMARY: In this study, we propose a novel deep-learning method based on multi-stage transfer learning (MSTL) from ImageNet and cancer cell line image pre-trained models to classify mammographic masses as either benign or malignant. The proposed method alleviates the challenge of obtaining la...
Autores principales: | Ayana, Gelan, Park, Jinhyung, Choe, Se-woon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909211/ https://www.ncbi.nlm.nih.gov/pubmed/35267587 http://dx.doi.org/10.3390/cancers14051280 |
Ejemplares similares
-
A Novel Multistage Transfer Learning for Ultrasound Breast Cancer Image Classification
por: Ayana, Gelan, et al.
Publicado: (2022) -
Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging
por: Ayana, Gelan, et al.
Publicado: (2021) -
Vision-Transformer-Based Transfer Learning for Mammogram Classification
por: Ayana, Gelan, et al.
Publicado: (2023) -
BUViTNet: Breast Ultrasound Detection via Vision Transformers
por: Ayana, Gelan, et al.
Publicado: (2022) -
Ultrasound-Responsive Nanocarriers for Breast Cancer Chemotherapy
por: Ayana, Gelan, et al.
Publicado: (2022)