Cargando…

Role of the Skin Microenvironment in Melanomagenesis: Epidermal Keratinocytes and Dermal Fibroblasts Promote BRAF Oncogene-Induced Senescence Escape in Melanocytes

SIMPLE SUMMARY: Melanoma is a deadly skin cancer caused by the uncontrolled proliferation of melanocytes, a population of specialized cells that produce the skin pigment melanin. An aberrant proliferation of melanocytes is common, manifesting as new moles, and these lesions often remain benign. Only...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadangi, Shreyans, Milosavljevic, Katarina, Castro-Perez, Edgardo, Lares, Marcos, Singh, Mithalesh, Altameemi, Sarah, Beebe, David J., Ayuso, Jose M., Setaluri, Vijayasaradhi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909265/
https://www.ncbi.nlm.nih.gov/pubmed/35267541
http://dx.doi.org/10.3390/cancers14051233
Descripción
Sumario:SIMPLE SUMMARY: Melanoma is a deadly skin cancer caused by the uncontrolled proliferation of melanocytes, a population of specialized cells that produce the skin pigment melanin. An aberrant proliferation of melanocytes is common, manifesting as new moles, and these lesions often remain benign. Only a small fraction of these aberrant melanocytes transition to melanoma (i.e., melanomagenesis). The factors that drive this transition are not fully understood. Recent studies have suggested that other cells—specifically, keratinocytes that make up the upper skin layers and fibroblasts, which are non-specialized cells within the deeper layers of the skin—also contribute to melanomagenesis. Here, employing microscale models that mimicked the skin microenvironment, we investigated the effect of crosstalk between melanocytes as well as keratinocytes and fibroblasts on melanomagenesis. Our findings show that keratinocyte- and fibroblast-derived factors can inhibit the mechanisms that prevent an uncontrolled melanocyte proliferation and contribute to melanomagenesis. Thus, targeting skin microenvironment-derived factors is a potential strategy to prevent melanomagenesis. ABSTRACT: BRAF(V600E) is the most common mutation driver in melanoma. This mutation is known to cause a brief burst of proliferation followed by growth arrest and senescence, which prevent an uncontrolled cell proliferation. This phenomenon is known as oncogene-induced senescence (OIS) and OIS escape is thought to lead to melanomagenesis. Much attention has been focused on the melanocyte-intrinsic mechanisms that contribute to senescence escape. Additional genetic events such as the loss of tumor suppressor PTEN and/or epigenetic changes that contribute to senescence escape have been described. However, the role of the skin microenvironment—specifically, the role of epidermal keratinocytes—on melanomagenesis is not fully understood. In this study, we employ a microfluidic platform to study the interaction between melanocytes expressing the BRAF(V600E) mutation as well as keratinocytes and dermal fibroblasts. We demonstrate that keratinocytes suppress senescence-related genes and promote the proliferation of transformed melanocytes. We also show that a keratinocyte-conditioned medium can alter the secretion of both pro- and anti-tumorigenic factors by transformed melanocytes. In addition, we show that melanocytes and keratinocytes from donors of white European and black African ancestry display different crosstalks; i.e., white keratinocytes appear to promote a more pro-tumorigenic phenotype compared with black keratinocytes. These data suggest that keratinocytes exert their influence on melanomagenesis both by suppressing senescence-related genes in melanocytes and by affecting the balance of the melanocyte-secreted factors that favor tumorigenesis.