Cargando…
Effects of Sophorolipid on Growth Performance, Organ Characteristics, Lipid Digestion Markers, and Gut Functionality and Integrity in Broiler Chickens
SIMPLE SUMMARY: Availability of dietary fat and oil is important to broiler chicken due to their rapid growth rate. Therefore, we conducted an experiment with dietary sophorolipid, a glycolipid-type emulsifier, to investigate growth, lipid digestion markers and gut health during the growing period....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909290/ https://www.ncbi.nlm.nih.gov/pubmed/35268204 http://dx.doi.org/10.3390/ani12050635 |
Sumario: | SIMPLE SUMMARY: Availability of dietary fat and oil is important to broiler chicken due to their rapid growth rate. Therefore, we conducted an experiment with dietary sophorolipid, a glycolipid-type emulsifier, to investigate growth, lipid digestion markers and gut health during the growing period. Growth was accelerated by dietary sophorolipid supplementation through upregulation of lipid digestion and absorption markers. Additionally, dietary sophorolipid also increased the surface area of the gut and modulated microbial population and short-chain fatty acid concentration. Collectively, this study proposed that sophorolipid addition in feed could enhance chicken’s growth by increased intestinal absorption of dietary lipid and improved gut microenvironments. ABSTRACT: Dietary fat and oil could aid in reaching the high-energy requirements of fast-growing birds; however, these inclusions could lead to nutrient waste. This is because young birds have limited lipid digestion due to the low secretion of lipase and bile salt. Sophorolipid (SPL), a glycolipid emulsifier with lower toxicity and higher biodegradability, can upregulate fat utilization by increasing digestibility. Accordingly, a five-week-long experiment was conducted with 720 one-day-old chicks (Ross 308) to investigate the effects of dietary SPL on growth, organ characteristics, and gut health. The allotment was partitioned into four treatment groups according to their body weight with six replications (30 chick/pen). The three treatment diets comprised a basal diet with a formulation that met the Ross 308 standard and 5, 10, and 15 ppm SPL in the basal diet. During the experiment, the birds had free access to feed, and body weight and feed intake were measured at the end of each phase. Chickens were put down at the end of the growing and finishing phases, and jejunum and cecal samples were obtained to investigate organ characteristics and gut environments. The data were analyzed using the generalized linear model procedures of SAS 9.4, and all data were assessed for linear, quadratic, and cubic effects of dietary SPL-supplemented dosages. Body weight was significantly increased with 10 ppm of SPL supplementation in the grower phase without affecting feed efficiency. The relative weights of the intestine and the bursa of Fabricius were quadratically decreased by SPL supplementation with a lower population of Streptococcus and higher propionate and butyrate concentrations. Additionally, the dietary SPL supplementation groups showed a significantly increased villus/crypt ratio with higher intestinal expression levels of fatty acid translocase, diacylglycerol acyltransferase 2, and fatty acid transporter 4. Collectively, proper SPL supplementation in the chicken diet could improve growth performance by down-regulating immune modulation and up-regulating lipid digestion and absorption via modulation of gut microenvironments. |
---|