Cargando…
Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics
[Image: see text] Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the no...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909409/ https://www.ncbi.nlm.nih.gov/pubmed/35287293 http://dx.doi.org/10.1021/acs.macromol.1c01408 |
_version_ | 1784666140595716096 |
---|---|
author | Monteferrante, Michele Tiribocchi, Adriano Succi, Sauro Pisignano, Dario Lauricella, Marco |
author_facet | Monteferrante, Michele Tiribocchi, Adriano Succi, Sauro Pisignano, Dario Lauricella, Marco |
author_sort | Monteferrante, Michele |
collection | PubMed |
description | [Image: see text] Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered. The mechanical properties of the polymer resulting from 1,6-hexanediol dimethacrylate systems are characterized in terms of viscosity, diffusion constant, and activation energy, whereas the topological ones through the number of cycles (polymer loops) and cyclomatic complexity. Effects like volume shrinkage and delaying of the gel point for increasing monomer concentration are also predicted, as well as the stress–strain curve and Young’s modulus. Combining ab initio, reactive molecular dynamics, and the D-NEMD method might lead to a novel and powerful tool to describe photopolymerization processes and to original routes to optimize additive manufacturing methods relying on photosensitive macromolecular systems. |
format | Online Article Text |
id | pubmed-8909409 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-89094092023-02-15 Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics Monteferrante, Michele Tiribocchi, Adriano Succi, Sauro Pisignano, Dario Lauricella, Marco Macromolecules [Image: see text] Photocurable polymers are used ubiquitously in 3D printing, coatings, adhesives, and composite fillers. In the present work, the free radical polymerization of photocurable compounds is studied using reactive classical molecular dynamics combined with a dynamical approach of the nonequilibrium molecular dynamics (D-NEMD). Different concentrations of radicals and reaction velocities are considered. The mechanical properties of the polymer resulting from 1,6-hexanediol dimethacrylate systems are characterized in terms of viscosity, diffusion constant, and activation energy, whereas the topological ones through the number of cycles (polymer loops) and cyclomatic complexity. Effects like volume shrinkage and delaying of the gel point for increasing monomer concentration are also predicted, as well as the stress–strain curve and Young’s modulus. Combining ab initio, reactive molecular dynamics, and the D-NEMD method might lead to a novel and powerful tool to describe photopolymerization processes and to original routes to optimize additive manufacturing methods relying on photosensitive macromolecular systems. American Chemical Society 2022-02-15 2022-03-08 /pmc/articles/PMC8909409/ /pubmed/35287293 http://dx.doi.org/10.1021/acs.macromol.1c01408 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Monteferrante, Michele Tiribocchi, Adriano Succi, Sauro Pisignano, Dario Lauricella, Marco Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular Dynamics |
title | Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular
Dynamics |
title_full | Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular
Dynamics |
title_fullStr | Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular
Dynamics |
title_full_unstemmed | Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular
Dynamics |
title_short | Capturing Free-Radical Polymerization by Synergetic Ab Initio Calculations and Topological Reactive Molecular
Dynamics |
title_sort | capturing free-radical polymerization by synergetic ab initio calculations and topological reactive molecular
dynamics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909409/ https://www.ncbi.nlm.nih.gov/pubmed/35287293 http://dx.doi.org/10.1021/acs.macromol.1c01408 |
work_keys_str_mv | AT monteferrantemichele capturingfreeradicalpolymerizationbysynergeticabinitiocalculationsandtopologicalreactivemoleculardynamics AT tiribocchiadriano capturingfreeradicalpolymerizationbysynergeticabinitiocalculationsandtopologicalreactivemoleculardynamics AT succisauro capturingfreeradicalpolymerizationbysynergeticabinitiocalculationsandtopologicalreactivemoleculardynamics AT pisignanodario capturingfreeradicalpolymerizationbysynergeticabinitiocalculationsandtopologicalreactivemoleculardynamics AT lauricellamarco capturingfreeradicalpolymerizationbysynergeticabinitiocalculationsandtopologicalreactivemoleculardynamics |