Cargando…
Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images
Heavy metal stress, which is a serious environmental problem, affects both animal and human health through the food chain. However, such subtle stress information is difficult to detect in remote sensing images. Therefore, enhancing the stress signal is key to accurately identifying heavy metal cont...
Autores principales: | Zhang, Yu, Liu, Meiling, Kong, Li, Peng, Tao, Xie, Dong, Zhang, Li, Tian, Lingwen, Zou, Xinyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909516/ https://www.ncbi.nlm.nih.gov/pubmed/35270260 http://dx.doi.org/10.3390/ijerph19052567 |
Ejemplares similares
-
A Framework for Rice Heavy Metal Stress Monitoring Based on Phenological Phase Space and Temporal Profile Analysis
por: Zou, Xinyu, et al.
Publicado: (2019) -
A New Vegetation Index Based on Multitemporal Sentinel-2 Images for Discriminating Heavy Metal Stress Levels in Rice
por: Zhang, Zhijiang, et al.
Publicado: (2018) -
Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms
por: Liu, Tianjiao, et al.
Publicado: (2018) -
Health Recognition Algorithm for Sports Training Based on Bi-GRU Neural Networks
por: Nie, Qi, et al.
Publicado: (2021) -
Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition
por: Tian, Lingwen, et al.
Publicado: (2017)