Cargando…
Multiomics Topic Modeling for Breast Cancer Classification
SIMPLE SUMMARY: Topic models are algorithms introduced for discovering hidden topics or latent variables in large, unstructured text corpora. Leveraging on analogies between texts and gene expression profiles, these algorithms can be used to find structures in expression data. This work presents an...
Autores principales: | Valle, Filippo, Osella, Matteo, Caselle, Michele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8909787/ https://www.ncbi.nlm.nih.gov/pubmed/35267458 http://dx.doi.org/10.3390/cancers14051150 |
Ejemplares similares
-
A Topic Modeling Analysis of TCGA Breast and Lung Cancer Transcriptomic Data
por: Valle, Filippo, et al.
Publicado: (2020) -
Integrative multiomics-histopathology analysis for breast cancer classification
por: Ektefaie, Yasha, et al.
Publicado: (2021) -
Modelling the evolution of transcription factor binding preferences in complex eukaryotes
por: Rosanova, Antonio, et al.
Publicado: (2017) -
A Model-Driven Quantitative Analysis of Retrotransposon Distributions in the Human Genome
por: Riba, Andrea, et al.
Publicado: (2020) -
Out-of-equilibrium gene expression fluctuations in the presence of extrinsic noise
por: Biondo, Marta, et al.
Publicado: (2023)