Cargando…

Influence of Particle Size and Zeta Potential in Treating Highly Coloured Old Landfill Leachate by Tin Tetrachloride and Rubber Seed

Old leachate normally has a low organic compound content, poor biodegradability and is hard to biologically treat. The efficacy of tetravalent metal salts as a coagulant and the application of a natural coagulant as a flocculant in landfill leachate treatment is still inconclusive. Hence, this study...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramli, Siti Fatihah, Aziz, Hamidi Abdul, Omar, Fatehah Mohd, Yusoff, Mohd Suffian, Halim, Herni, Kamaruddin, Mohamad Anuar, Ariffin, Kamar Shah, Hung, Yung-Tse
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910293/
https://www.ncbi.nlm.nih.gov/pubmed/35270706
http://dx.doi.org/10.3390/ijerph19053016
Descripción
Sumario:Old leachate normally has a low organic compound content, poor biodegradability and is hard to biologically treat. The efficacy of tetravalent metal salts as a coagulant and the application of a natural coagulant as a flocculant in landfill leachate treatment is still inconclusive. Hence, this study aimed to evaluate the potential application of tin tetrachloride (SnCl(4)) as the main coagulant and the rubber seed (Hevea brasiliensis) (RS) as the natural coagulant aid as the sole treatment in eradicating highly coloured and turbid stabilised landfill leachate present at one of the old local landfills in Malaysia. The standard jar test conducted revealed that SnCl(4) was able to eliminate 99% and 97.3% of suspended solids (SS) and colour, respectively, at pH8, with 10,000 mg/L dosages, an average particle size of 2419 d·nm, and a zeta potential (ZP) of −0.4 mV. However, RS was found to be ineffective as the main coagulant and could only remove 46.7% of SS and 76.5% of colour at pH3 with 6000 mg/L dosages, and also exhibited smaller particles (933 d·nm) with ZP values of −6.3 mV. When used as a coagulant aid, the polymer bridging mechanism in RS helped in reducing the SnCl(4) concentration from 10,000 mg/L to 8000 mg/L by maintaining the same performances. The presence of 1000 mg/L RS as a coagulant aid was able to remove 100% of SS and 97.6% of colour. The study concluded that RS has the potential to be used together with SnCl(4) in treating concentrated leachate with SS and colour.