Cargando…

Multiple Roles for Cytokines in Atopic Dermatitis: From Pathogenic Mediators to Endotype-Specific Biomarkers to Therapeutic Targets

Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases, which generally presents with intense itching and recurrent eczematous lesions. AD affects up to 20% of children and 10% of adults in high-income countries. The prevalence and incidence of AD have increased in recen...

Descripción completa

Detalles Bibliográficos
Autores principales: Fania, Luca, Moretta, Gaia, Antonelli, Flaminia, Scala, Enrico, Abeni, Damiano, Albanesi, Cristina, Madonna, Stefania
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910412/
https://www.ncbi.nlm.nih.gov/pubmed/35269828
http://dx.doi.org/10.3390/ijms23052684
Descripción
Sumario:Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases, which generally presents with intense itching and recurrent eczematous lesions. AD affects up to 20% of children and 10% of adults in high-income countries. The prevalence and incidence of AD have increased in recent years. The onset of AD mostly occurs in childhood, although in some cases AD may persist in adult life or even manifest in middle age (adult-onset AD). AD pathophysiology is made of a complex net, in which genetic background, skin barrier dysfunction, innate and adaptive immune responses, as well as itch contribute to disease development, progression, and chronicization. One of the most important features of AD is skin dehydration, which is mainly caused by filaggrin mutations that determine trans-epidermal water loss, pH alterations, and antigen penetration. In accordance with the “outside-inside” theory of AD pathogenesis, in a context of an altered epidermal barrier, antigens encounter epidermal antigen presentation cells (APCs), such as epidermal Langerhans cells and inflammatory epidermal dendritic cells, leading to their maturation and Th-2 cell-mediated inflammation. APCs also bear trimeric high-affinity receptors for immunoglobulin E (IgE), which induce IgE-mediated sensitizations as part of pathogenic mechanisms leading to AD. In this review, we discuss the role of cytokines in the pathogenesis of AD, considering patients with various clinical AD phenotypes. Moreover, we describe the cytokine patterns in patients with AD at different phases of the disease evolution, as well as in relation to different phenotypes/endotypes, including age, race, and intrinsic/extrinsic subtypes. We also discuss the outcomes of current biologics for AD, which corroborate the presence of multiple cytokine axes involved in the background of AD. A deep insight into the correlation between cytokine patterns and the related clinical forms of AD is a crucial step towards increasingly personalized, and therefore more efficient therapy.