Cargando…
Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin
BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910510/ https://www.ncbi.nlm.nih.gov/pubmed/35269765 http://dx.doi.org/10.3390/ijms23052624 |
_version_ | 1784666502299910144 |
---|---|
author | Capitanio, Daniele Moriggi, Manuela Barbacini, Pietro Torretta, Enrica Moroni, Isabella Blasevich, Flavia Morandi, Lucia Mora, Marina Gelfi, Cecilia |
author_facet | Capitanio, Daniele Moriggi, Manuela Barbacini, Pietro Torretta, Enrica Moroni, Isabella Blasevich, Flavia Morandi, Lucia Mora, Marina Gelfi, Cecilia |
author_sort | Capitanio, Daniele |
collection | PubMed |
description | BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes. The study aimed to determine which proteins might contribute to preserving muscle function in these patients. Patients were subdivided, based on the absence or presence of deletions in the D8 region, into two groups, BMD1 and BMD2. Muscle extracts were analyzed by 2-D DIGE, label-free LC-ESI-MS/MS, and Ingenuity pathway analysis (IPA). Increased levels of proteins typical of fast fibers and of proteins involved in the sarcomere reorganization characterize BMD2. IPA of proteomics datasets indicated in BMD2 prevalence of glycolysis and gluconeogenesis and a correct flux through the TCA cycle enabling them to maintain both metabolism and epithelial adherens junction. A 2-D DIGE analysis revealed an increase of acetylated proteoforms of moonlighting proteins aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase that can target the nucleus promoting stem cell recruitment and muscle regeneration. In BMD2, immunoblotting indicated higher levels of myogenin and lower levels of PAX7 and SIRT1/2 associated with a set of proteins identified by proteomics as involved in muscle homeostasis maintenance. |
format | Online Article Text |
id | pubmed-8910510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89105102022-03-11 Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin Capitanio, Daniele Moriggi, Manuela Barbacini, Pietro Torretta, Enrica Moroni, Isabella Blasevich, Flavia Morandi, Lucia Mora, Marina Gelfi, Cecilia Int J Mol Sci Article BMD is characterized by a marked heterogeneity of gene mutations resulting in many abnormal dystrophin proteins with different expression and residual functions. The smaller dystrophin molecules lacking a portion around exon 48 of the rod domain, named the D8 region, are related to milder phenotypes. The study aimed to determine which proteins might contribute to preserving muscle function in these patients. Patients were subdivided, based on the absence or presence of deletions in the D8 region, into two groups, BMD1 and BMD2. Muscle extracts were analyzed by 2-D DIGE, label-free LC-ESI-MS/MS, and Ingenuity pathway analysis (IPA). Increased levels of proteins typical of fast fibers and of proteins involved in the sarcomere reorganization characterize BMD2. IPA of proteomics datasets indicated in BMD2 prevalence of glycolysis and gluconeogenesis and a correct flux through the TCA cycle enabling them to maintain both metabolism and epithelial adherens junction. A 2-D DIGE analysis revealed an increase of acetylated proteoforms of moonlighting proteins aldolase, enolase, and glyceraldehyde-3-phosphate dehydrogenase that can target the nucleus promoting stem cell recruitment and muscle regeneration. In BMD2, immunoblotting indicated higher levels of myogenin and lower levels of PAX7 and SIRT1/2 associated with a set of proteins identified by proteomics as involved in muscle homeostasis maintenance. MDPI 2022-02-27 /pmc/articles/PMC8910510/ /pubmed/35269765 http://dx.doi.org/10.3390/ijms23052624 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Capitanio, Daniele Moriggi, Manuela Barbacini, Pietro Torretta, Enrica Moroni, Isabella Blasevich, Flavia Morandi, Lucia Mora, Marina Gelfi, Cecilia Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin |
title | Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin |
title_full | Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin |
title_fullStr | Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin |
title_full_unstemmed | Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin |
title_short | Molecular Fingerprint of BMD Patients Lacking a Portion in the Rod Domain of Dystrophin |
title_sort | molecular fingerprint of bmd patients lacking a portion in the rod domain of dystrophin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910510/ https://www.ncbi.nlm.nih.gov/pubmed/35269765 http://dx.doi.org/10.3390/ijms23052624 |
work_keys_str_mv | AT capitaniodaniele molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT moriggimanuela molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT barbacinipietro molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT torrettaenrica molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT moroniisabella molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT blasevichflavia molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT morandilucia molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT moramarina molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin AT gelficecilia molecularfingerprintofbmdpatientslackingaportionintheroddomainofdystrophin |