Cargando…

High Light Acclimation Mechanisms Deficient in a PsbS-Knockout Arabidopsis Mutant

The photosystem II PsbS protein of thylakoid membranes is responsible for regulating the energy-dependent, non-photochemical quenching of excess chlorophyll excited states as a short-term mechanism for protection against high light (HL) stress. However, the role of PsbS protein in long-term HL accli...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Young Nam, Le, Thi Thuy Linh, Hwang, Ji-Hye, Zulfugarov, Ismayil S., Kim, Eun-Ha, Kim, Hyun Uk, Jeon, Jong-Seong, Lee, Dong-Hee, Lee, Choon-Hwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910700/
https://www.ncbi.nlm.nih.gov/pubmed/35269832
http://dx.doi.org/10.3390/ijms23052695
Descripción
Sumario:The photosystem II PsbS protein of thylakoid membranes is responsible for regulating the energy-dependent, non-photochemical quenching of excess chlorophyll excited states as a short-term mechanism for protection against high light (HL) stress. However, the role of PsbS protein in long-term HL acclimation processes remains poorly understood. Here we investigate the role of PsbS protein during long-term HL acclimation processes in wild-type (WT) and npq4-1 mutants of Arabidopsis which lack the PsbS protein. During long-term HL illumination, photosystem II photochemical efficiency initially dropped, followed by a recovery of electron transport and photochemical quenching (qL) in WT, but not in npq4-1 mutants. In addition, we observed a reduction in light-harvesting antenna size during HL treatment that ceased after HL treatment in WT, but not in npq4-1 mutants. When plants were adapted to HL, more reactive oxygen species (ROS) were accumulated in npq4-1 mutants compared to WT. Gene expression studies indicated that npq4-1 mutants failed to express genes involved in plastoquinone biosynthesis. These results suggest that the PsbS protein regulates recovery processes such as electron transport and qL during long-term HL acclimation by maintaining plastoquinone biosynthetic gene expression and enhancing ROS homeostasis.