Cargando…
Expression of Macrophage Scavenger Receptor (MSR1) in Peripheral Blood Cells from Patients with Different Respiratory Diseases: Beyond Monocytes
Background: Macrophage scavenger receptor 1 (MSR1) has mostly been described in macrophages, but we previously found a significant gene expression increase in peripheral blood mononuclear cells (PBMCs) of asthmatic patients. Objective: To confirm those results and to define its cellular origin in PB...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910889/ https://www.ncbi.nlm.nih.gov/pubmed/35268530 http://dx.doi.org/10.3390/jcm11051439 |
Sumario: | Background: Macrophage scavenger receptor 1 (MSR1) has mostly been described in macrophages, but we previously found a significant gene expression increase in peripheral blood mononuclear cells (PBMCs) of asthmatic patients. Objective: To confirm those results and to define its cellular origin in PBMCs. Methods: Four groups of subjects were studied: healthy controls (C), nonallergic asthmatic (NA), allergic asthmatic (AA), and chronic obstructive pulmonary disease (COPD) patients. RNA was extracted from PBMCs. MSR1 gene expression was analyzed by RT-qPCR. The presence of MSR1 on the cellular surface of PBMC cellular subtypes was analyzed by confocal microscopy and flow cytometry. Results: MSR1 gene expression was significantly increased in the three clinical conditions compared to the healthy control group, with substantial variations according to disease type and severity. MSR1 expression on T cells (CD4(+) and CD8(+)), B cells, and monocytes was confirmed by confocal microscopy and flow cytometry. In all clinical groups, the four immune cell subtypes studied expressed MSR1, with a greater expression on B lymphocytes and monocytes, exhibiting differences according to disease and severity. Conclusions: This is the first description of MSR1’s presence on lymphocytes’ surfaces and reinforces the potential role of MSR1 as a player in asthma and COPD. |
---|