Cargando…
Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry
The availability of computers has brought novel prospects in drug design. Neural networks (NN) were an early tool that cheminformatics tested for converting data into drugs. However, the initial interest faded for almost two decades. The recent success of Deep Learning (DL) has inspired a renaissanc...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910896/ https://www.ncbi.nlm.nih.gov/pubmed/35269939 http://dx.doi.org/10.3390/ijms23052797 |
_version_ | 1784666610002296832 |
---|---|
author | Polanski, Jaroslaw |
author_facet | Polanski, Jaroslaw |
author_sort | Polanski, Jaroslaw |
collection | PubMed |
description | The availability of computers has brought novel prospects in drug design. Neural networks (NN) were an early tool that cheminformatics tested for converting data into drugs. However, the initial interest faded for almost two decades. The recent success of Deep Learning (DL) has inspired a renaissance of neural networks for their potential application in deep chemistry. DL targets direct data analysis without any human intervention. Although back-propagation NN is the main algorithm in the DL that is currently being used, unsupervised learning can be even more efficient. We review self-organizing maps (SOM) in mapping molecular representations from the 1990s to the current deep chemistry. We discovered the enormous efficiency of SOM not only for features that could be expected by humans, but also for those that are not trivial to human chemists. We reviewed the DL projects in the current literature, especially unsupervised architectures. DL appears to be efficient in pattern recognition (Deep Face) or chess (Deep Blue). However, an efficient deep chemistry is still a matter for the future. This is because the availability of measured property data in chemistry is still limited. |
format | Online Article Text |
id | pubmed-8910896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89108962022-03-11 Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry Polanski, Jaroslaw Int J Mol Sci Review The availability of computers has brought novel prospects in drug design. Neural networks (NN) were an early tool that cheminformatics tested for converting data into drugs. However, the initial interest faded for almost two decades. The recent success of Deep Learning (DL) has inspired a renaissance of neural networks for their potential application in deep chemistry. DL targets direct data analysis without any human intervention. Although back-propagation NN is the main algorithm in the DL that is currently being used, unsupervised learning can be even more efficient. We review self-organizing maps (SOM) in mapping molecular representations from the 1990s to the current deep chemistry. We discovered the enormous efficiency of SOM not only for features that could be expected by humans, but also for those that are not trivial to human chemists. We reviewed the DL projects in the current literature, especially unsupervised architectures. DL appears to be efficient in pattern recognition (Deep Face) or chess (Deep Blue). However, an efficient deep chemistry is still a matter for the future. This is because the availability of measured property data in chemistry is still limited. MDPI 2022-03-03 /pmc/articles/PMC8910896/ /pubmed/35269939 http://dx.doi.org/10.3390/ijms23052797 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Polanski, Jaroslaw Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry |
title | Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry |
title_full | Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry |
title_fullStr | Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry |
title_full_unstemmed | Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry |
title_short | Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry |
title_sort | unsupervised learning in drug design from self-organization to deep chemistry |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8910896/ https://www.ncbi.nlm.nih.gov/pubmed/35269939 http://dx.doi.org/10.3390/ijms23052797 |
work_keys_str_mv | AT polanskijaroslaw unsupervisedlearningindrugdesignfromselforganizationtodeepchemistry |