Cargando…
Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia
Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been p...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911081/ https://www.ncbi.nlm.nih.gov/pubmed/35269855 http://dx.doi.org/10.3390/ijms23052712 |
_version_ | 1784666690697560064 |
---|---|
author | Ren, Bin Betz, Oliver B. Seitz, Daniel Thirion, Christian Salomon, Michael Jansson, Volkmar Müller, Peter E. Betz, Volker M. |
author_facet | Ren, Bin Betz, Oliver B. Seitz, Daniel Thirion, Christian Salomon, Michael Jansson, Volkmar Müller, Peter E. Betz, Volker M. |
author_sort | Ren, Bin |
collection | PubMed |
description | Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been proven to be highly effective, especially when expressed locally by route of gene transfer, providing a constant stimulus over an extended period of time. However, the creation of genetically modified hADSCs is laborious and time-consuming, which hinders clinical translation of the approach. Instead, expedited single-surgery gene therapy strategies must be developed. Therefore, in an in vitro experiment, we evaluated a novel growth factor delivery system, comprising adenoviral BMP-2 transduced fascia tissue in terms of BMP-2 release kinetics and osteogenic effects, on hADSCs seeded on an innovative biomimetic spongiosa-like scaffold. As compared to direct BMP-2 transduction of hADSCs or addition of recombinant BMP-2, overexpressing fascia provided a more uniform, constant level of BMP-2 over 30 days. Despite considerably higher BMP-2 peak levels in the comparison groups, delivery by overexpressing fascia led to a strong osteogenic response of hADSCs. The use of BMP-2 transduced fascia in combination with hADSCs may evolve into an expedited single-surgery gene transfer approach to bone repair. |
format | Online Article Text |
id | pubmed-8911081 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89110812022-03-11 Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia Ren, Bin Betz, Oliver B. Seitz, Daniel Thirion, Christian Salomon, Michael Jansson, Volkmar Müller, Peter E. Betz, Volker M. Int J Mol Sci Article Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been proven to be highly effective, especially when expressed locally by route of gene transfer, providing a constant stimulus over an extended period of time. However, the creation of genetically modified hADSCs is laborious and time-consuming, which hinders clinical translation of the approach. Instead, expedited single-surgery gene therapy strategies must be developed. Therefore, in an in vitro experiment, we evaluated a novel growth factor delivery system, comprising adenoviral BMP-2 transduced fascia tissue in terms of BMP-2 release kinetics and osteogenic effects, on hADSCs seeded on an innovative biomimetic spongiosa-like scaffold. As compared to direct BMP-2 transduction of hADSCs or addition of recombinant BMP-2, overexpressing fascia provided a more uniform, constant level of BMP-2 over 30 days. Despite considerably higher BMP-2 peak levels in the comparison groups, delivery by overexpressing fascia led to a strong osteogenic response of hADSCs. The use of BMP-2 transduced fascia in combination with hADSCs may evolve into an expedited single-surgery gene transfer approach to bone repair. MDPI 2022-02-28 /pmc/articles/PMC8911081/ /pubmed/35269855 http://dx.doi.org/10.3390/ijms23052712 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ren, Bin Betz, Oliver B. Seitz, Daniel Thirion, Christian Salomon, Michael Jansson, Volkmar Müller, Peter E. Betz, Volker M. Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia |
title | Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia |
title_full | Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia |
title_fullStr | Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia |
title_full_unstemmed | Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia |
title_short | Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia |
title_sort | osteogenic differentiation of human adipose-derived stem cells seeded on a biomimetic spongiosa-like scaffold: bone morphogenetic protein-2 delivery by overexpressing fascia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911081/ https://www.ncbi.nlm.nih.gov/pubmed/35269855 http://dx.doi.org/10.3390/ijms23052712 |
work_keys_str_mv | AT renbin osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT betzoliverb osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT seitzdaniel osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT thirionchristian osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT salomonmichael osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT janssonvolkmar osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT mullerpetere osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia AT betzvolkerm osteogenicdifferentiationofhumanadiposederivedstemcellsseededonabiomimeticspongiosalikescaffoldbonemorphogeneticprotein2deliverybyoverexpressingfascia |