Cargando…

Progress and Challenges of InGaN/GaN-Based Core–Shell Microrod LEDs

LEDs based on planar InGaN/GaN heterostructures define an important standard for solid-state lighting. However, one drawback is the polarization field of the wurtzite heterostructure impacting both electron–hole overlap and emission energy. Three-dimensional core–shell microrods offer field-free sid...

Descripción completa

Detalles Bibliográficos
Autores principales: Meier, Johanna, Bacher, Gerd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911094/
https://www.ncbi.nlm.nih.gov/pubmed/35268857
http://dx.doi.org/10.3390/ma15051626
Descripción
Sumario:LEDs based on planar InGaN/GaN heterostructures define an important standard for solid-state lighting. However, one drawback is the polarization field of the wurtzite heterostructure impacting both electron–hole overlap and emission energy. Three-dimensional core–shell microrods offer field-free sidewalls, thus improving radiative recombination rates while simultaneously increasing the light-emitting area per substrate size. Despite those promises, microrods have still not replaced planar devices. In this review, we discuss the progress in device processing and analysis of microrod LEDs and emphasize the perspectives related to the 3D device architecture from an applications point of view.