Cargando…
Prediction of Rockfill Materials’ Shear Strength Using Various Kernel Function-Based Regression Models—A Comparative Perspective
The mechanical behavior of the rockfill materials (RFMs) used in a dam’s shell must be evaluated for the safe and cost-effective design of embankment dams. However, the characterization of RFMs with specific reference to shear strength is challenging and costly, as the materials may contain particle...
Autores principales: | Ahmad, Mahmood, Al-Mansob, Ramez A., Jamil, Irfan, Al-Zubi, Mohammad A., Sabri, Mohanad Muayad Sabri, Alguno, Arnold C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911239/ https://www.ncbi.nlm.nih.gov/pubmed/35268965 http://dx.doi.org/10.3390/ma15051739 |
Ejemplares similares
-
Predicting California bearing ratio of HARHA-treated expansive soils using Gaussian process regression
por: Ahmad, Mahmood, et al.
Publicado: (2023) -
Author Correction: Predicting California bearing ratio of HARHA-treated expansive soils using Gaussian process regression
por: Ahmad, Mahmood, et al.
Publicado: (2023) -
Influence of Scale Effect on Strength and Deformation Characteristics of Rockfill Materials
por: Han, Hongxing, et al.
Publicado: (2022) -
Prediction of the Compressive Strength for Cement-Based Materials with Metakaolin Based on the Hybrid Machine Learning Method
por: Huang, Jiandong, et al.
Publicado: (2022) -
Intelligent Design of Construction Materials: A Comparative Study of AI Approaches for Predicting the Strength of Concrete with Blast Furnace Slag
por: Wu, Xiangping, et al.
Publicado: (2022)