Cargando…
Personalized Risk Schemes and Machine Learning to Empower Genomic Prognostication Models in Myelodysplastic Syndromes
Myelodysplastic syndromes (MDS) are characterized by variable clinical manifestations and outcomes. Several prognostic systems relying on clinical factors and cytogenetic abnormalities have been developed to help stratify MDS patients into different risk categories of distinct prognoses and therapeu...
Autores principales: | Awada, Hussein, Gurnari, Carmelo, Durmaz, Arda, Awada, Hassan, Pagliuca, Simona, Visconte, Valeria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911403/ https://www.ncbi.nlm.nih.gov/pubmed/35269943 http://dx.doi.org/10.3390/ijms23052802 |
Ejemplares similares
-
Molecular Targeted Therapy in Myelodysplastic Syndromes: New Options for Tailored Treatments
por: Pagliuca, Simona, et al.
Publicado: (2021) -
The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications
por: Awada, Hassan, et al.
Publicado: (2020) -
A multimodal analysis of genomic and RNA splicing features in myeloid malignancies
por: Durmaz, Arda, et al.
Publicado: (2023) -
Deciphering the Therapeutic Resistance in Acute Myeloid Leukemia
por: Gurnari, Carmelo, et al.
Publicado: (2020) -
The Interactome between Metabolism and Gene Mutations in Myeloid Malignancies
por: Gurnari, Carmelo, et al.
Publicado: (2021)