Cargando…

Innovative Medial Cushioning Orthoses Affect Peroneus Longus Electromyographic Activity during Running

Background: Over-supination processes of the foot and ankle involving peroneus longus (PL) damage during running sports have been treated conservatively with passive control tools, such as tapes, braces, or external ankle supports, but the effect of orthoses with typical lateral wedging orthoses (TL...

Descripción completa

Detalles Bibliográficos
Autores principales: Sanchez-Gomez, Ruben, Gomez-Carrion, Alvaro, Martinez-Sebastian, Carlos, Alou, Luis, Sevillano, David, Nuñez-Fernandez, Almudena, Sanz-Wozniak, Paola, de la Cruz-Torres, Blanca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911408/
https://www.ncbi.nlm.nih.gov/pubmed/35268430
http://dx.doi.org/10.3390/jcm11051339
Descripción
Sumario:Background: Over-supination processes of the foot and ankle involving peroneus longus (PL) damage during running sports have been treated conservatively with passive control tools, such as tapes, braces, or external ankle supports, but the effect of orthoses with typical lateral wedging orthoses (TLWO) on the muscular activity of PL during running remains unclear. Here we investigate the effects of innovative medial cushioning orthoses (IMCO) on PL activity during the full running gait cycle. In addition, we wished to ascertain the effects of innovative medial cushioning orthoses (IMCO) on PL activity during running. Methods: Thirty-one healthy recreational runners (mean age 34.5 ± 3.33) with neutral foot posture index scores, were selected to participate in the present study. They ran on a treadmill at 9 km/h wearing seven different orthoses (NRS, IMCO 3 mm, IMCO 6 mm, IMCO 9 mm, TLWO 3 mm, TLWO 6 mm and TLWO 9 mm), randomly performed on the same day while electromyographic activity of the PL muscle was recorded. Statistical intraclass correlation coefficient (ICC) to test reliability was carried out and the Wilcoxon test with Bonferroni’s correction was developed to analyze the differences between the conditions. Results: the reliability of all assessments showed data higher than 0.81, that is, “almost perfect reliability”; all EMG PL values wearing either TLWO or IMCO showed a statistically significant reduction versus NRS during the fully analyzed running gait cycle; the highest difference was set on NRS 23.08 ± 6.67 to TLWO 9 mm 17.77 ± 4.794 (p < 0.001). Conclusions: Muscular EMG activity of the PL during the full running gait cycle decreases when wearing either TLWO or IMCO relative to NRS; therefore, these orthoses could be prescribed to treat the strain and overload pathologies of PL. In addition, IMCO—as it less thick, compared with TLWO—can be used when aiming to achieve better running economy.