Cargando…
Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity
Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911476/ https://www.ncbi.nlm.nih.gov/pubmed/35268867 http://dx.doi.org/10.3390/ma15051637 |
_version_ | 1784666817987346432 |
---|---|
author | Sultan, Mujaddad Siddique, Maria Khan, Romana Fallatah, Ahmed M. Fatima, Nighat Shahzadi, Irum Waheed, Ummara Bilal, Muhammad Ali, Asmat Abbasi, Arshad Mehmood |
author_facet | Sultan, Mujaddad Siddique, Maria Khan, Romana Fallatah, Ahmed M. Fatima, Nighat Shahzadi, Irum Waheed, Ummara Bilal, Muhammad Ali, Asmat Abbasi, Arshad Mehmood |
author_sort | Sultan, Mujaddad |
collection | PubMed |
description | Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan’s surface for modification. UV–Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich’s isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV–Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illustrated phytochemicals in the leaf extract of L. lucidum functioning as stabilizing agents around AgNPs and AgCS. Whereas, corresponding crystalline peaks of nanomaterial, including a signal peak at 3 keV indicating the presence of silver, were confirmed by XRD and EDX. The Langmuir model was chosen as an efficient model for adsorption and sono-adsorption, which exposed that under optimum conditions (pH = 6, dye initial concentration = 5 mg L(−1), adsorbents dosage = 0.005 g, time = 120 min, US power 80 W), MB removal efficiency of AgNPs was >70%, using ultrasound-assisted adsorption compared to the non-sonicated adsorption. Furthermore, AgNPs exhibited promising antibacterial potential against Staphylococcus aureus with the maximum zone of inhibition (14.67 ± 0.47 mm). It was concluded that the green synthesis approach for the large-scale production of metallic nanoparticles is quite effective and can be recommended for efficient and cost-effective way to eradicate dyes, particularly from textile wastewater. |
format | Online Article Text |
id | pubmed-8911476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-89114762022-03-11 Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity Sultan, Mujaddad Siddique, Maria Khan, Romana Fallatah, Ahmed M. Fatima, Nighat Shahzadi, Irum Waheed, Ummara Bilal, Muhammad Ali, Asmat Abbasi, Arshad Mehmood Materials (Basel) Article Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan’s surface for modification. UV–Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich’s isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV–Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illustrated phytochemicals in the leaf extract of L. lucidum functioning as stabilizing agents around AgNPs and AgCS. Whereas, corresponding crystalline peaks of nanomaterial, including a signal peak at 3 keV indicating the presence of silver, were confirmed by XRD and EDX. The Langmuir model was chosen as an efficient model for adsorption and sono-adsorption, which exposed that under optimum conditions (pH = 6, dye initial concentration = 5 mg L(−1), adsorbents dosage = 0.005 g, time = 120 min, US power 80 W), MB removal efficiency of AgNPs was >70%, using ultrasound-assisted adsorption compared to the non-sonicated adsorption. Furthermore, AgNPs exhibited promising antibacterial potential against Staphylococcus aureus with the maximum zone of inhibition (14.67 ± 0.47 mm). It was concluded that the green synthesis approach for the large-scale production of metallic nanoparticles is quite effective and can be recommended for efficient and cost-effective way to eradicate dyes, particularly from textile wastewater. MDPI 2022-02-22 /pmc/articles/PMC8911476/ /pubmed/35268867 http://dx.doi.org/10.3390/ma15051637 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sultan, Mujaddad Siddique, Maria Khan, Romana Fallatah, Ahmed M. Fatima, Nighat Shahzadi, Irum Waheed, Ummara Bilal, Muhammad Ali, Asmat Abbasi, Arshad Mehmood Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity |
title | Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity |
title_full | Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity |
title_fullStr | Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity |
title_full_unstemmed | Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity |
title_short | Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity |
title_sort | ligustrum lucidum leaf extract-assisted green synthesis of silver nanoparticles and nano-adsorbents having potential in ultrasound-assisted adsorptive removal of methylene blue dye from wastewater and antimicrobial activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911476/ https://www.ncbi.nlm.nih.gov/pubmed/35268867 http://dx.doi.org/10.3390/ma15051637 |
work_keys_str_mv | AT sultanmujaddad ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT siddiquemaria ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT khanromana ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT fallatahahmedm ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT fatimanighat ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT shahzadiirum ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT waheedummara ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT bilalmuhammad ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT aliasmat ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity AT abbasiarshadmehmood ligustrumlucidumleafextractassistedgreensynthesisofsilvernanoparticlesandnanoadsorbentshavingpotentialinultrasoundassistedadsorptiveremovalofmethylenebluedyefromwastewaterandantimicrobialactivity |