Cargando…
Prediction of Compressive Strength of Partially Saturated Concrete Using Machine Learning Methods
The aim of this research is to recommend a set of criteria for estimating the compressive strength of concrete under marine environment with various saturation and salinity conditions. Cylindrical specimens from three different design mixtures are used as concrete samples. The specimens are subjecte...
Autores principales: | Candelaria, Ma. Doreen Esplana, Kee, Seong-Hoon, Lee, Kang-Seok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8911506/ https://www.ncbi.nlm.nih.gov/pubmed/35268896 http://dx.doi.org/10.3390/ma15051662 |
Ejemplares similares
-
Effects of Saturation Levels on the Ultrasonic Pulse Velocities and Mechanical Properties of Concrete
por: Candelaria, Ma. Doreen Esplana, et al.
Publicado: (2020) -
Evaluation of Heat-Induced Damage in Concrete Using Machine Learning of Ultrasonic Pulse Waves
por: Candelaria, Ma. Doreen Esplana, et al.
Publicado: (2022) -
Compressive Strength Evaluation of Ultra-High-Strength Concrete by Machine Learning
por: Shen, Zhongjie, et al.
Publicado: (2022) -
Evaluation of Delamination in Concrete by IE Testing Using Multi-Channel Elastic Wave Data
por: Kee, Seong-Hoon, et al.
Publicado: (2019) -
Non-Tuned Machine Learning Approach for Predicting the Compressive Strength of High-Performance Concrete
por: Al-Shamiri, Abobakr Khalil, et al.
Publicado: (2020)